The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284034 Primes p such that (p^2 - 3)/2 and (p^2 + 1)/2 are twin primes. 3
 3, 5, 11, 19, 29, 79, 101, 349, 409, 449, 521, 569, 571, 661, 739, 991, 1091, 1129, 1181, 1459, 1489, 1531, 1901, 2269, 2281, 2341, 2351, 2389, 2549, 2659, 2671, 2719, 2729, 2731, 3109, 4049, 4349, 5279, 5431, 5471, 5531, 5591, 5669, 6329, 6359, 6871, 7559, 7741 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Primes which correspond to the small leg of an integral right triangle whose hypotenuse is part of a twin prime pair. Each term p of the sequence must be part of a Pythagorean triple of the form {p, (p^2 - 1)/2, (p^2 + 1)/2} corresponding to {a(n), A284035(n) - 1, A284035(n)}. LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 EXAMPLE The prime p = 79 is in the sequence because (p^2-3)/2 = 3119 and (p^2+1)/2 = 3121 are twin primes. Remark that {79, 3120, 3121} is a Pythagorean triple. MATHEMATICA Select[Prime@ Range[10^3], Function[p, Times @@ Boole@ Map[PrimeQ[(p^2 + #)/2 ] &, {-3, 1}] == 1]] (* Michael De Vlieger, Mar 20 2017 *) Select[Prime[Range[1000]], AllTrue[{(#^2-3)/2, (#^2+1)/2}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 04 2017 *) PROG (Sage) [p for p in prime_range(10000) if is_prime((p^2-3)//2) and is_prime((p^2+1)//2)] (PARI) isok(p) = isprime(p) && isprime((p^2-3)/2) && isprime((p^2+1)/2); \\ Michel Marcus, Mar 31 2017 CROSSREFS Cf. A284035, A048161, A165635, A284036, A051642. Sequence in context: A172438 A023233 A048161 * A051642 A007671 A259589 Adjacent sequences: A284031 A284032 A284033 * A284035 A284036 A284037 KEYWORD nonn AUTHOR Giuseppe Coppoletta, Mar 19 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 17:54 EDT 2023. Contains 361432 sequences. (Running on oeis4.)