login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284036
Positive integers n such that (n^2 - 3)/2 and (n^2 + 1)/2 are twin primes.
2
3, 5, 11, 19, 25, 29, 65, 79, 101, 205, 209, 221, 245, 275, 289, 299, 349, 371, 409, 415, 449, 521, 535, 569, 571, 575, 595, 649, 661, 695, 739, 781, 791, 935, 949, 991, 1081, 1091, 1099, 1129, 1181, 1225, 1241, 1285, 1345, 1349, 1459, 1489, 1531, 1541, 1615
OFFSET
1,1
COMMENTS
All terms are obviously odd.
LINKS
EXAMPLE
25 is a term because (25^2 - 3)/2 = 311 and (25^2 + 1)/2 = 313 are twin primes.
MAPLE
filter:= n -> isprime((n^2-3)/2) and isprime((n^2+1)/2):
select(filter, [seq(i, i=1..2000, 2)]); # Robert Israel, Apr 24 2017
MATHEMATICA
Select[Range[1, 1285, 2], Times @@ Boole@ Map[PrimeQ, (#^2 + {-3, 1})/2] == 1 &] (* Michael De Vlieger, Mar 28 2017 *)
PROG
(Sage) [n for n in range(3, 1700, 2) if is_prime((n^2 - 3)//2) and is_prime((n^2 + 1)//2)]
(PARI) isok(n) = isprime((n^2 - 3)/2) && isprime((n^2 + 1)/2); \\ Michel Marcus, Apr 04 2017
(Python)
from sympy import isprime
print([n for n in range(3, 1700, 2) if isprime((n**2 - 3)//2) and isprime((n**2 + 1)//2)]) # Indranil Ghosh, Apr 04 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Giuseppe Coppoletta, Mar 27 2017
STATUS
approved