login
A217792
Primes which are equal to the sum of the binary digits of consecutive primes starting with 2.
2
3, 5, 11, 19, 23, 47, 61, 71, 101, 127, 131, 179, 211, 223, 293, 347, 383, 397, 401, 419, 433, 491, 547, 563, 577, 587, 641, 647, 683, 757, 859, 929, 947, 1019, 1093, 1123, 1181, 1187, 1303, 1319, 1327, 1381, 1409, 1543, 1831, 1847, 1877, 1997, 2003, 2113
OFFSET
1,1
COMMENTS
This is similar to A168161 except for eliminating the requirement that the primes whose binary digits are summed be less than or equal to the resulting (sum-of-binary-digits) prime.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
Select[Accumulate[Total/@IntegerDigits[Prime[Range[1000]], 2]], PrimeQ]
PROG
(PARI) t=0; forprime(p=2, 1e4, if(isprime(t+=hammingweight(p)), print1(t", "))) \\ Charles R Greathouse IV, Mar 25 2013
CROSSREFS
Cf. A168161.
Sequence in context: A122516 A243899 A168161 * A284036 A172438 A023233
KEYWORD
nonn,base
AUTHOR
Harvey P. Dale, Mar 25 2013
STATUS
approved