login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217795
Numbers n such that n^4+1 and (n+2)^4+1 are both prime.
3
2, 4, 46, 54, 80, 88, 140, 276, 492, 554, 566, 582, 730, 758, 786, 798, 912, 928, 1142, 1150, 1200, 1236, 1404, 1540, 1552, 1610, 1644, 1650, 1932, 1942, 2044, 2102, 2204, 2222, 2224, 2238, 2254, 2374, 2436, 2486, 2510, 2640, 2674, 2698, 2732, 2734, 3244, 3286
OFFSET
1,1
LINKS
EXAMPLE
4 is in the sequence because 4^4+1 = 257 and 6^4+1 = 1297 are both prime.
MAPLE
for n from 0 by 2 to 3500 do: if type(n^4+1, prime)=true and type((n+2)^4+1, prime)=true then printf(`%d, `, n):else fi:od:
MATHEMATICA
lst={}; Do[p=n^4+1; q=(n+2)^4+1; If[PrimeQ[p] && PrimeQ[q], AppendTo[lst, n]], {n, 0, 3000}]; lst
Select[Range[3500], AllTrue[{#^4+1, (#+2)^4+1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 29 2015 *)
PROG
(Magma) [n: n in [0..3300] | IsPrime(n^4 + 1) and IsPrime((n + 2)^4 + 1)]; // Vincenzo Librandi, Oct 13 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, Oct 12 2012
STATUS
approved