login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240929
Number of 10-digit positive integers in base n where the sum of the first k digits equals the sum of the last k digits.
3
126, 6046, 88428, 694360, 3705741, 15192604, 51418473, 150420187, 392406145, 933294637, 2056947827, 4253047045, 8329101326, 15566783605, 27934647638, 48371293570, 81155221112, 132379936520, 210555362990, 327359243694, 498565022483, 745175639274, 1094795785319
OFFSET
2,1
COMMENTS
These integers are sometimes called balanced numbers.
REFERENCES
Cambridge Colleges Sixth Term Examination Papers (STEP) 2007, Paper I, Section A (Pure Mathematics), Nr. 1.
LINKS
FORMULA
a(n) = n*(n-1)*(156190*n^7 + 15619*n^6 + 45019*n^5 + 14149*n^4 + 18139*n^3 + 9760*n^2 + 6660*n + 5040)/362880
From Chai Wah Wu, May 08 2024: (Start)
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n > 11.
G.f.: x^2*(x^7 + 326*x^6 + 7942*x^5 + 42341*x^4 + 67030*x^3 + 33638*x^2 + 4786*x + 126)/(x - 1)^10. (End)
PROG
(Python)
def A240929(n): return n*(n*(n*(n*(n*(n*(n*(n*(156190*n-140571)+29400)-30870)+3990)-8379)-3100)-1620)-5040)//362880 # Chai Wah Wu, May 08 2024
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Martin Renner, Aug 03 2014
STATUS
approved