login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037963
a(n) = n^2*(n+1)*(3*n^2 + 7*n - 2)*(n+5)!/11520.
4
0, 1, 126, 5796, 186480, 5103000, 129230640, 3162075840, 76592355840, 1863435974400, 45950224320000, 1155068769254400, 29708792431718400, 783699448602470400, 21234672840116736000, 591499300737945600000
OFFSET
0,3
COMMENTS
For n>=1, a(n) is equal to the number of surjections from {1,2,...,n+5} onto {1,2,...,n}. - Aleksandar M. Janjic and Milan Janjic, Feb 24 2007
REFERENCES
Identity (1.21) in H. W. Gould, Combinatorial Identities, Morgantown, 1972; page 3.
FORMULA
From G. C. Greubel, Jun 20 2022: (Start)
a(n) = (-1)^n * Sum_{j=0..n} (-1)^j * binomial(n, j)*j^(n+5).
a(n) = n!*StirlingS2(n+5, n).
a(n) = A131689(n+5, n).
a(n) = A019538(n+5, n).
E.g.f.: x*(1 + 52*x + 328*x^2 + 444*x^3 + 120*x^4)/(1-x)^11. (End)
MATHEMATICA
Table[n!*StirlingS2[n+5, n], {n, 0, 30}] (* G. C. Greubel, Jun 20 2022 *)
PROG
(Magma) [Factorial(n)*StirlingSecond(n+5, n): n in [0..30]]; // G. C. Greubel, Jun 20 2022
(SageMath) [factorial(n)*stirling_number2(n+5, n) for n in (0..30)] # G. C. Greubel, Jun 20 2022
CROSSREFS
KEYWORD
nonn
STATUS
approved