login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037964
a(n) = (1/2)*(binomial(4*n, 2*n) - (-1)^n*binomial(2*n,n)).
4
0, 4, 32, 472, 6400, 92504, 1351616, 20060016, 300533760, 4537591960, 68923172032, 1052049834576, 16123800489472, 247959271674352, 3824345280321920, 59132290859989472, 916312070170755072
OFFSET
0,2
REFERENCES
The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972; Formula (3.74), page 31.
LINKS
FORMULA
From R. J. Mathar, Feb 20 2015: (Start)
n*(2*n-1)*(n-1)*a(n) -12*(n-1)*(4*n^2-11*n+10)*a(n-1) +4*(38*n^3-333*n^2+715*n-435)*a(n-2) +48*(34*n^3-228*n^2+499*n-355)*a(n-3) +16*(4*n-15)*(2*n-7)*(4*n-13)*a(n-4) = 0.
n*(n-1)*(2*n-1)*(5*n^2-15*n+11)*a(n) -4*(n-1)*(30*n^4-120*n^3 +161*n^2-82*n+12)*a(n-1) -4*(4*n-7)*(2*n-3)*(4*n-5)*(5*n^2-5*n+1)*a(n-2) = 0. (End)
From G. C. Greubel, Jun 20 2022: (Start)
a(n) = Sum_{k=0..n-1} binomial(2*n, 2*k+1)^2.
a(n) = (1/2)*(A001448(n) - (-1)^n*A000984(n)).
a(n) = (1/2)*((2*n+1)*A000108(2*n) - (-1)^n*A000108(n)).
G.f.: (1/4)*(1/sqrt(1+4*sqrt(x)) + 1/sqrt(1-4*sqrt(x)) - 2/sqrt(1+4*x)). (End)
MAPLE
A037964 := proc(n)
binomial(4*n, 2*n)/2-(-1)^n*binomial(2*n, n)/2 ;
end proc: # R. J. Mathar, Feb 20 2015
MATHEMATICA
With[{C= CatalanNumber}, Table[(1/2)*((2*n+1)*C[2*n] -(-1)^n*(n+1)*C[n]), {n, 0, 30}]] (* G. C. Greubel, Jun 20 2022 *)
PROG
(Magma) [(1/2)*((2*n+1)*Catalan(2*n) -(-1)^n*(n+1)*Catalan(n)): n in [0..30]]; // G. C. Greubel, Jun 20 2022
(SageMath) [sum(binomial(2*n, 2*k+1)^2 for k in (0..n-1)) for n in (0..30)] # G. C. Greubel, Jun 20 2022
CROSSREFS
KEYWORD
nonn
STATUS
approved