Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jun 20 2022 04:17:57
%S 0,4,32,472,6400,92504,1351616,20060016,300533760,4537591960,
%T 68923172032,1052049834576,16123800489472,247959271674352,
%U 3824345280321920,59132290859989472,916312070170755072
%N a(n) = (1/2)*(binomial(4*n, 2*n) - (-1)^n*binomial(2*n,n)).
%D The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972; Formula (3.74), page 31.
%H G. C. Greubel, <a href="/A037964/b037964.txt">Table of n, a(n) for n = 0..825</a>
%F From _R. J. Mathar_, Feb 20 2015: (Start)
%F n*(2*n-1)*(n-1)*a(n) -12*(n-1)*(4*n^2-11*n+10)*a(n-1) +4*(38*n^3-333*n^2+715*n-435)*a(n-2) +48*(34*n^3-228*n^2+499*n-355)*a(n-3) +16*(4*n-15)*(2*n-7)*(4*n-13)*a(n-4) = 0.
%F n*(n-1)*(2*n-1)*(5*n^2-15*n+11)*a(n) -4*(n-1)*(30*n^4-120*n^3 +161*n^2-82*n+12)*a(n-1) -4*(4*n-7)*(2*n-3)*(4*n-5)*(5*n^2-5*n+1)*a(n-2) = 0. (End)
%F From _G. C. Greubel_, Jun 20 2022: (Start)
%F a(n) = Sum_{k=0..n-1} binomial(2*n, 2*k+1)^2.
%F a(n) = (1/2)*(A001448(n) - (-1)^n*A000984(n)).
%F a(n) = (1/2)*((2*n+1)*A000108(2*n) - (-1)^n*A000108(n)).
%F G.f.: (1/4)*(1/sqrt(1+4*sqrt(x)) + 1/sqrt(1-4*sqrt(x)) - 2/sqrt(1+4*x)). (End)
%p A037964 := proc(n)
%p binomial(4*n,2*n)/2-(-1)^n*binomial(2*n,n)/2 ;
%p end proc: # _R. J. Mathar_, Feb 20 2015
%t With[{C= CatalanNumber}, Table[(1/2)*((2*n+1)*C[2*n] -(-1)^n*(n+1)*C[n]), {n, 0, 30}]] (* _G. C. Greubel_, Jun 20 2022 *)
%o (Magma) [(1/2)*((2*n+1)*Catalan(2*n) -(-1)^n*(n+1)*Catalan(n)): n in [0..30]]; // _G. C. Greubel_, Jun 20 2022
%o (SageMath) [sum(binomial(2*n, 2*k+1)^2 for k in (0..n-1)) for n in (0..30)] # _G. C. Greubel_, Jun 20 2022
%Y Cf. A000108, A000984, A001448.
%K nonn
%O 0,2
%A _N. J. A. Sloane_