login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A003261
Woodall (or Riesel) numbers: n*2^n - 1.
(Formerly M4379)
37
1, 7, 23, 63, 159, 383, 895, 2047, 4607, 10239, 22527, 49151, 106495, 229375, 491519, 1048575, 2228223, 4718591, 9961471, 20971519, 44040191, 92274687, 192937983, 402653183, 838860799, 1744830463, 3623878655, 7516192767, 15569256447, 32212254719, 66571993087
OFFSET
1,2
COMMENTS
For n>1, a(n) is base at which zero is reached for the function "write f(j) in base j, read as base j+1 and then subtract 1 to give f(j+1)" starting from f(n) = n^2 - 1. - Henry Bottomley, Aug 06 2000
Sequence corresponds also to the maximum chain length of the classic puzzle whereby, under agreed commercial terms, an asset of unringed golden chain, when judiciously fragmented into as few as n pieces and n-1 opened links (through n-1 cuts), might be used to settle debt sequentially, with a golden link covering for unit cost. Here beside the n-1 opened links, the n fragmented pieces have lengths n, 2*n, 4*n, ..., 2^(n-1)*n. For instance, the chain of original length a(5)=159, if segregated by 4 cuts into 5+1+10+1+20+1+40+1+80, may be used to pay sequentially, i.e., a link-cost at a time, for an equivalent cost up to 159 links, to the same creditor. - Lekraj Beedassy, Feb 06 2003
REFERENCES
A. Brousseau, Number Theory Tables. Fibonacci Association, San Jose, CA, 1973, p. 159.
K. R. Bhutani and A. B. Levin, "The Problem of Sawing a Chain", Journal of Recreational Mathematics 2002-3 31(1) 32-35.
G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
M. Gardner, Martin Gardner's Sixth Book of Mathematical Diversions from Scientific American, "Gold Links", Problem 4, pp. 50-51; 57-58, University of Chicago Press, 1983.
O. O’Shea, Mathematical Brainteasers with Surprising Solutions, Problem 76, pp. 183-185, Prometheus Books, Guilford, Connecticut, 2020.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vladimir Pletser, Table of n, a(n) for n = 1..3000 (terms 1..300 from T. D. Noe).
Attila Bérczes, István Pink, and Paul Thomas Young, Cullen numbers and Woodall numbers in generalized Fibonacci sequences, J. Num. Theor. (2024) Vol. 262, 86-102.
Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972. See p. 159.
C. K. Caldwell, Woodall Numbers.
Orhan Eren and Yüksel Soykan, Gaussian Generalized Woodall Numbers, Arch. Current Res. Int'l (2023) Vol. 23, Iss. 8, Art. No. ACRI.108618, 48-68. See p. 50.
Orhan Eren and Yüksel Soykan, On Dual Hyperbolic Generalized Woodall Numbers, Arch. Current Res. Int'l (2024) Vol. 24, Iss. 11, Art. No. ACRI.126420, 398-423. See p. 401.
D. Marques, On Generalized Cullen and Woodall Numbers That are Also Fibonacci Numbers, Journal of Integer Sequences, 17 (2014), #14.9.4.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Amelia Carolina Sparavigna, On the generalized sums of Mersenne, Fermat, Cullen and Woodall Numbers, Politecnico di Torino (Italy, 2019).
Amelia Carolina Sparavigna, Composition Operations of Generalized Entropies Applied to the Study of Numbers, International Journal of Sciences (2019) Vol. 8, No. 4, 87-92.
Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
Eric Weisstein's World of Mathematics, Woodall Number.
Wikipedia, Woodall number.
FORMULA
G.f.: x*(-1-2*x+4*x^2) / ( (x-1)*(-1+2*x)^2 ). - Simon Plouffe in his 1992 dissertation
Binomial transform of A133653 and double binomial transform of [1, 5, -1, 1, -1, 1, ...]. - Gary W. Adamson, Sep 19 2007
a(n) = -(2)^n * A006127(-n) for all n in Z. - Michael Somos, Nov 04 2018
E.g.f.: 1 + exp(x)*(2*exp(x)*x - 1). - Stefano Spezia, Nov 24 2024
EXAMPLE
G.f. = x + 7*x^2 + 23*x^3 + 63*x^4 + 159*x^5 + 383*x^6 + 895*x^7 + ... - Michael Somos, Nov 04 2018
MAPLE
for n from 1 to 3000 do n, n*2^n -1; end do; # Vladimir Pletser, Dec 30 2022
MATHEMATICA
Table[n*2^n-1, {n, 3*4!}] (* Vladimir Joseph Stephan Orlovsky, Apr 25 2010 *)
LinearRecurrence[{5, -8, 4}, {1, 7, 23}, 30] (* Harvey P. Dale, Mar 13 2022 *)
PROG
(Haskell)
a003261 = (subtract 1) . a036289 -- Reinhard Zumkeller, Mar 05 2012
(PARI) A003261(n)=n*2^n-1 \\ M. F. Hasler, Oct 31 2012
(Magma) [n*2^n - 1: n in [1..30]]; // G. C. Greubel, Nov 04 2018
(Python) [n*2**n - 1 for n in range(1, 29)] # Michael S. Branicky, Jan 07 2021
CROSSREFS
a(n) = A036289(n) - 1 = A002064(n) - 2.
Cf. A133653.
Sequence in context: A201110 A333187 A220509 * A306971 A343519 A365439
KEYWORD
nonn,easy,nice
STATUS
approved