login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220509
n^3 + 3n + 3^n.
7
1, 7, 23, 63, 157, 383, 963, 2551, 7097, 20439, 60079, 178511, 533205, 1596559, 4785755, 14352327, 43050865, 129145127, 387426375, 1162268383, 3486792461, 10460362527, 31381070323, 94143191063, 282429550377, 847288625143, 2541865845983, 7625597504751
OFFSET
0,2
COMMENTS
This is to A220425 as 3 is to 2.
The subsequence of primes begins: 7, 23, 157, 383, 2551, see A220701 for the associated n.
LINKS
FORMULA
a(n) = n^3 + 3*n + 3^n = A000578(n) + A008585(n) + A000244(n).
G.f.: (1 - 8*x^2 + 6*x^3 - 11*x^4)/((1-x)^4*(1-3*x)). - Vincenzo Librandi, Dec 18 2012
EXAMPLE
a(1) = 1^3 + 3*1 + 3^1 = 7.
a(2) = 2^3 + 3*2 + 3^2 = 23.
MATHEMATICA
Table[n^3 + 3*n + 3^n, {n, 0, 30}] (* T. D. Noe, Dec 17 2012 *)
CoefficientList[Series[(1 - 8*x^2 + 6*x^3 - 11*x^4)/((1-x)^4*(1-3x)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 18 2012 *)
PROG
(Maxima) A220509(n):=n^3+3*n+3^n$ makelist(A220509(n), n, 0, 20); /* Martin Ettl, Dec 17 2012 */
(Magma) [n^3 + 3*n + 3^n: n in [0..30]]; // Vincenzo Librandi, Dec 18 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Dec 15 2012
STATUS
approved