login
A220509
n^3 + 3n + 3^n.
7
1, 7, 23, 63, 157, 383, 963, 2551, 7097, 20439, 60079, 178511, 533205, 1596559, 4785755, 14352327, 43050865, 129145127, 387426375, 1162268383, 3486792461, 10460362527, 31381070323, 94143191063, 282429550377, 847288625143, 2541865845983, 7625597504751
OFFSET
0,2
COMMENTS
This is to A220425 as 3 is to 2.
The subsequence of primes begins: 7, 23, 157, 383, 2551, see A220701 for the associated n.
LINKS
FORMULA
a(n) = n^3 + 3*n + 3^n = A000578(n) + A008585(n) + A000244(n).
G.f.: (1 - 8*x^2 + 6*x^3 - 11*x^4)/((1-x)^4*(1-3*x)). - Vincenzo Librandi, Dec 18 2012
EXAMPLE
a(1) = 1^3 + 3*1 + 3^1 = 7.
a(2) = 2^3 + 3*2 + 3^2 = 23.
MATHEMATICA
Table[n^3 + 3*n + 3^n, {n, 0, 30}] (* T. D. Noe, Dec 17 2012 *)
CoefficientList[Series[(1 - 8*x^2 + 6*x^3 - 11*x^4)/((1-x)^4*(1-3x)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 18 2012 *)
PROG
(Maxima) A220509(n):=n^3+3*n+3^n$ makelist(A220509(n), n, 0, 20); /* Martin Ettl, Dec 17 2012 */
(Magma) [n^3 + 3*n + 3^n: n in [0..30]]; // Vincenzo Librandi, Dec 18 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Dec 15 2012
STATUS
approved