OFFSET
0,3
COMMENTS
This sequence consists of 0 together with a permutation of the natural numbers. The nonnegative integers (A001477) are arranged in the successive layers from T(0,0) = 0. The n-th layer start with T(n,1) = n^2. The n-th layer is formed by the first n+1 elements of row n and the first n elements in increasing order of the column n.
The first antidiagonal is formed by odd numbers: 1, 3. The second antidiagonal is formed by even numbers: 4, 2, 8. The third antidiagonal is formed by odd numbers: 9, 5, 7, 15. And so on.
It appears that in the n-th layer there is at least a prime number <= g and also there is at least a prime number > g, where g is the number on the main diagonal, the n-th oblong number A002378(n), if n >= 1.
LINKS
FORMULA
From Petros Hadjicostas, Mar 10 2021: (Start)
T(n,k) = (A342354(n,k) - 1)/2.
O.g.f.: (x^4*y^3 + 3*x^3*y^4 + x^4*y^2 - 10*x^3*y^3 - x^2*y^4 + 3*x^3*y^2 + x^2*y^3 - 4*x^3*y + 8*x^2*y^2 + 3*x^2*y + x*y^2 + x^2 - 10*x*y - y^2 + x + 3*y)/((1 - x)^3*(1 - y)^3*(1 - x*y)^2). (End)
EXAMPLE
The second layer is [4, 5, 6, 7, 8] which looks like this:
. . 8
. . 7,
4, 5, 6,
Square array T(0,0)..T(10,10) begins:
0, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120,...
1, 2, 7, 14, 23, 34, 47, 62, 79, 98, 119,...
4, 5, 6, 13, 22, 33, 46, 61, 78, 97, 118,...
9, 10, 11, 12, 21, 32, 45, 60, 77, 96, 117,...
16, 17, 18, 19, 20, 31, 44, 59, 76, 95, 118,...
25, 26, 27, 28, 29, 30, 43, 58, 75, 94, 117,...
36, 37, 38, 39, 40, 41, 42, 57, 74, 93, 114,...
49, 50, 51, 52, 53, 54, 55, 56, 73, 92, 113,...
64, 65, 66, 67, 68, 69, 70, 71, 72, 91, 112,...
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 111,...
100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,...
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Feb 09 2013
EXTENSIONS
Name edited by Petros Hadjicostas, Mar 10 2021
STATUS
approved