login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299613
Decimal expansion of 2*W(1), where W is the Lambert W function (or PowerLog); see Comments.
21
1, 1, 3, 4, 2, 8, 6, 5, 8, 0, 8, 1, 9, 5, 6, 7, 7, 4, 5, 9, 9, 9, 9, 3, 7, 3, 2, 4, 4, 2, 0, 7, 1, 1, 0, 9, 9, 5, 0, 7, 6, 3, 1, 5, 7, 4, 3, 7, 3, 0, 2, 5, 0, 1, 6, 2, 7, 0, 2, 6, 2, 1, 5, 8, 4, 4, 6, 0, 9, 1, 5, 8, 6, 1, 7, 3, 3, 6, 9, 1, 3, 3, 3, 8, 6, 4
OFFSET
1,3
COMMENTS
The Lambert W function satisfies the functional equations
W(x) + W(y) = W(x*y*(1/W(x) + 1/W(y))) = log(x*y)/(W(x)*W(y)) for x and y greater than -1/e, so that 2*W(1) = W(2/W(1)) = -2*log(W(1)).
Guide to related constants:
--------------------------------------------
x y W(x) + W(y) e^(W(x) + W(y))
--------------------------------------------
e e 2 exactly e^2 exactly
FORMULA
Equals 2*A030178.
EXAMPLE
2*W(1) = 1.13428658081956774599993...
MATHEMATICA
w[x_] := ProductLog[x]; x = 1; y = 1; u = N[w[x] + w[y], 100]
RealDigits[u, 10][[1]] (* A299613 *)
RealDigits[2 ProductLog[1], 10, 111][[1]] (* Robert G. Wilson v, Mar 02 2018 *)
PROG
(PARI) 2*lambertw(1) \\ G. C. Greubel, Mar 07 2018
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Clark Kimberling, Mar 01 2018
STATUS
approved