OFFSET
1,3
COMMENTS
The Lambert W function satisfies the functional equations
W(x) + W(y) = W(x*y*(1/W(x) + 1/W(y))) = log(x*y)/(W(x)*W(y)) for x and y greater than -1/e, so that 2*W(1) = W(2/W(1)) = -2*log(W(1)).
Guide to related constants:
--------------------------------------------
x y W(x) + W(y) e^(W(x) + W(y))
--------------------------------------------
e e 2 exactly e^2 exactly
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
Equals 2*A030178.
EXAMPLE
2*W(1) = 1.13428658081956774599993...
MATHEMATICA
w[x_] := ProductLog[x]; x = 1; y = 1; u = N[w[x] + w[y], 100]
RealDigits[u, 10][[1]] (* A299613 *)
RealDigits[2 ProductLog[1], 10, 111][[1]] (* Robert G. Wilson v, Mar 02 2018 *)
PROG
(PARI) 2*lambertw(1) \\ G. C. Greubel, Mar 07 2018
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Mar 01 2018
STATUS
approved