OFFSET
1,1
COMMENTS
The Lambert W function satisfies the functional equation e^(W(x) + W(y)) = x*y/(W(x)*W(y)) for x and y greater than -1/e, so that e^(2*W(1)) = (W(1))^(-2). See A299613 for a guide to related constants.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Lambert W-Function
EXAMPLE
e^(2*W(1)) = 3.1089547635799361854809454054...
MATHEMATICA
w[x_] := ProductLog[x]; x = 1; y = 1;
N[E^(w[x] + w[y]), 130] (* A299614 *)
RealDigits[(1/LambertW[1])^2, 10, 100][[1]] (* G. C. Greubel, Mar 03 2018 *)
PROG
(PARI) (1/lambertw(1))^2 \\ G. C. Greubel, Mar 03 2018
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Mar 01 2018
STATUS
approved