OFFSET
1,1
COMMENTS
The Lambert W function satisfies the functional equation e^(W(x) + W(y)) = x*y/(W(x)*W(y)) for x and y greater than -1/e, so that e^(2*W(3/2)) = (9/4)/(W(3/2))^2. See A299613 for a guide to related constants.
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function
EXAMPLE
e^(2*W(3/2)) = 4.2704649783213837050754449...
MATHEMATICA
w[x_] := ProductLog[x]; x = 3/2; y = 3/2;
N[E^(w[x] + w[y]), 130] (* A299631 *)
PROG
(PARI) exp(2*lambertw(3/2)) \\ Altug Alkan, Mar 13 2018
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Mar 13 2018
STATUS
approved