login
A299631
Decimal expansion of e^(2*W(3/2)) = (9/4)/(W(3/2))^2, where W is the Lambert W function (or PowerLog); see Comments.
3
4, 2, 7, 0, 4, 6, 4, 9, 7, 8, 3, 2, 1, 3, 8, 3, 7, 0, 5, 0, 7, 5, 4, 4, 4, 9, 4, 9, 0, 5, 7, 8, 0, 6, 6, 1, 0, 7, 3, 1, 0, 7, 9, 9, 8, 4, 3, 4, 8, 3, 6, 9, 2, 2, 6, 3, 7, 5, 5, 0, 7, 1, 2, 1, 3, 8, 1, 4, 1, 7, 9, 9, 8, 9, 8, 3, 5, 7, 6, 1, 4, 2, 2, 7, 7, 7
OFFSET
1,1
COMMENTS
The Lambert W function satisfies the functional equation e^(W(x) + W(y)) = x*y/(W(x)*W(y)) for x and y greater than -1/e, so that e^(2*W(3/2)) = (9/4)/(W(3/2))^2. See A299613 for a guide to related constants.
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function
EXAMPLE
e^(2*W(3/2)) = 4.2704649783213837050754449...
MATHEMATICA
w[x_] := ProductLog[x]; x = 3/2; y = 3/2;
N[E^(w[x] + w[y]), 130] (* A299631 *)
PROG
(PARI) exp(2*lambertw(3/2)) \\ Altug Alkan, Mar 13 2018
CROSSREFS
Sequence in context: A176385 A155829 A181051 * A205143 A266394 A353575
KEYWORD
nonn,cons,easy
AUTHOR
Clark Kimberling, Mar 13 2018
STATUS
approved