login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299623 Decimal expansion of e^(W(1) + W(1/2)) = (1/2)/(W(1)*W(1/2)), where W is the Lambert W function (or PowerLog); see Comments. 3
2, 5, 0, 6, 4, 7, 4, 0, 4, 2, 6, 6, 3, 8, 9, 8, 8, 9, 9, 4, 7, 4, 4, 8, 5, 8, 1, 5, 3, 1, 8, 9, 4, 1, 7, 1, 7, 4, 9, 6, 4, 0, 2, 3, 4, 2, 3, 3, 5, 7, 4, 1, 5, 8, 8, 0, 8, 9, 8, 9, 5, 4, 2, 8, 6, 6, 0, 1, 8, 7, 2, 3, 8, 8, 2, 0, 4, 3, 8, 5, 6, 9, 1, 6, 9, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The Lambert W function satisfies the functional equation e^(W(x) + W(y)) = x*y/(W(x)*W(y)) for x and y greater than -1/e, so that e^(W(1) + W(1/2)) = (1/2)/(W(1)*W(1/2)).  See A299613 for a guide to related constants.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

Eric Weisstein's World of Mathematics, Lambert W-Function

EXAMPLE

e^(W(1) + W(1/2)) = 2.506474042663898899474485815318941717...

MATHEMATICA

w[x_] := ProductLog[x]; x = 1; y = 1/2;

N[E^(w[x] + w[y]), 130]   (* A299623 *)

RealDigits[1/(2*LambertW[1]*LambertW[1/2]), 10, 100][[1]] (* G. C. Greubel, Mar 03 2018 *)

PROG

(PARI) 1/(2*lambertw(1)*lambertw(1/2)) \\ G. C. Greubel, Mar 03 2018

CROSSREFS

Cf. A299613, A299622.

Sequence in context: A268886 A090625 A021403 * A290796 A019727 A011184

Adjacent sequences:  A299620 A299621 A299622 * A299624 A299625 A299626

KEYWORD

nonn,cons,easy

AUTHOR

Clark Kimberling, Mar 03 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 9 16:50 EDT 2020. Contains 335545 sequences. (Running on oeis4.)