login
A060736
Array of square numbers read by antidiagonals in up direction.
13
1, 2, 4, 5, 3, 9, 10, 6, 8, 16, 17, 11, 7, 15, 25, 26, 18, 12, 14, 24, 36, 37, 27, 19, 13, 23, 35, 49, 50, 38, 28, 20, 22, 34, 48, 64, 65, 51, 39, 29, 21, 33, 47, 63, 81, 82, 66, 52, 40, 30, 32, 46, 62, 80, 100
OFFSET
1,2
COMMENTS
A simple permutation of natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. - Boris Putievskiy, Jan 09 2013
FORMULA
T(n+1, k)=n*n+k, T(k, n+1)=(n+1)*(n+1)+1-k, 1 <= k <= n+1.
a(n)=i^2-j+1 if i >= j, a(n)=(j-1)^2 + i if i < j, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Jan 09 2013
EXAMPLE
1 4 9 16 .. => a(1)= 1
2 3 8 15 .. => a(2)= 2, a(3)=4
5 6 7 14 .. => a(4)= 5, a(5)=3, a(6)=9
10 11 12 13 .. => a(7)=10, a(8)=6, a(9)=8, a(10)=16
MATHEMATICA
Table[ If[n < 2*k-1, k^2 + k - n, (n-k)^2 + k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 09 2013 *)
PROG
(Python)
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
j=(t*t+3*t+4)/2-n
if i>=j:
result=i**2-j+1
else:
result=(j-1)**2+i
# Boris Putievskiy, Jan 09 2013
CROSSREFS
Cf. A060734. Inverse permutation: A064788, the first inverse function (numbers of rows) A194258, the second inverse function (numbers of columns) A194195.
Sequence in context: A353708 A117606 A245814 * A097292 A269780 A038776
KEYWORD
nonn,tabl
AUTHOR
Frank Ellermann, Apr 23 2001
STATUS
approved