login
A060735
a(1)=1, a(2)=2; thereafter, a(n) is the smallest number m not yet in the sequence such that every prime that divides a(n-1) also divides m.
49
1, 2, 4, 6, 12, 18, 24, 30, 60, 90, 120, 150, 180, 210, 420, 630, 840, 1050, 1260, 1470, 1680, 1890, 2100, 2310, 4620, 6930, 9240, 11550, 13860, 16170, 18480, 20790, 23100, 25410, 27720, 30030, 60060, 90090, 120120, 150150, 180180, 210210
OFFSET
1,2
COMMENTS
Also, numbers k at which k / (phi(k) + 1) increases.
Except for the initial 1, this sequence is a primorial (A002110) followed by its multiples until the next primorial, then the multiples of that primorial and so on. - Wilfredo Lopez (chakotay147138274(AT)yahoo.com), Dec 28 2006
a(1)=1, a(2)=2. For n >= 3, a(n) is the smallest integer > a(n-1) that is divisible by every prime which divides lcm(a(1), a(2), a(3), ..., a(n)). - Leroy Quet, Feb 23 2010
Numbers n for which A053589(n) = A260188(n), thus numbers with only one nonzero digit when written in primorial base A049345. - Antti Karttunen, Aug 30 2016
Lexicographically earliest infinite sequence of distinct positive numbers with property that every prime that divides a(n-1) also divides a(n). - N. J. A. Sloane, Apr 08 2022
LINKS
Trey Deitch, Table of n, a(n) for n = 1..20000 (terms 1..5000 from Enrique Pérez Herrero)
Michel Planat, Riemann hypothesis from the Dedekind psi function, arXiv:1010.3239 [math.GM], 2010.
FORMULA
a(1) = 1, a(n) = a(n-1) + rad(a(n-1)) with rad=A007947, squarefree kernel. - Reinhard Zumkeller, Apr 10 2006
a(A101301(n)+1) = A002110(n). - Enrique Pérez Herrero, Jun 10 2012
a(n) = 1 + A343048(n). - Antti Karttunen, Nov 14 2024
EXAMPLE
After a(2)=2 the next term must be even, so a(3)=4.
Then a(4) must be even so a(4) = 6.
Now a(5) must be a multiple of 2*3=6, so a(5)=12.
Then a(6)=18, a(7)=24, a(8)=30.
Now a(9) must be a multiple of 2*3*5 = 30, so a(9)=60. And so on.
MAPLE
seq(seq(k*mul(ithprime(i), i=1..n-1), k=1..ithprime(n)-1), n=1..10); # Vladeta Jovovic, Apr 08 2004
a := proc(n) option remember; if n=1 then return 1 fi; a(n-1);
% + convert(numtheory:-factorset(%), `*`) end:
seq(a(n), n=1..42); # after Zumkeller, Peter Luschny, Aug 30 2016
MATHEMATICA
a = 0; Do[ b = n/(EulerPhi[ n ] + 1); If[ b > a, a = b; Print[ n ] ], {n, 1, 10^6} ]
f[n_] := Range[Prime[n + 1] - 1] Times @@ Prime@ Range@ n; Array[f, 7, 0] // Flatten (* Robert G. Wilson v, Jul 22 2015 *)
PROG
(PARI) first(n)=my(v=vector(n), k=1, p=1, P=1); v[1]=1; for(i=2, n, v[i]=P*k++; if(k>p && isprime(k), p=k; P=v[i]; k=1)); v \\ Charles R Greathouse IV, Jul 22 2015
(PARI) is_A060735(n, P=1)={forprime(p=2, , n>(P*=p)||return(1); n%P&&return)} \\ M. F. Hasler, Mar 14 2017
(Python)
from functools import cache;
from sympy import primefactors, prod
@cache
def a(n): return 1 if n == 0 else a(n-1) + prod(primefactors(a(n-1)))
print([a(n) for n in range(42)]) # Trey Deitch, Jun 08 2024
CROSSREFS
Indices of ones in A276157 and A267263.
One more than A343048.
Sequence in context: A175305 A342702 A171923 * A181416 A225566 A273009
KEYWORD
nonn,changed
AUTHOR
Robert G. Wilson v, Apr 23 2001
EXTENSIONS
Definition corrected by Franklin T. Adams-Watters, Apr 16 2009
Simpler definition, comments, examples from N. J. A. Sloane, Apr 08 2022
STATUS
approved