OFFSET
1,2
COMMENTS
Also, numbers k at which k / (phi(k) + 1) increases.
Except for the initial 1, this sequence is a primorial (A002110) followed by its multiples until the next primorial, then the multiples of that primorial and so on. - Wilfredo Lopez (chakotay147138274(AT)yahoo.com), Dec 28 2006
a(1)=1, a(2)=2. For n >= 3, a(n) is the smallest integer > a(n-1) that is divisible by every prime which divides lcm(a(1), a(2), a(3), ..., a(n)). - Leroy Quet, Feb 23 2010
Numbers n for which A053589(n) = A260188(n), thus numbers with only one nonzero digit when written in primorial base A049345. - Antti Karttunen, Aug 30 2016
Lexicographically earliest infinite sequence of distinct positive numbers with property that every prime that divides a(n-1) also divides a(n). - N. J. A. Sloane, Apr 08 2022
LINKS
Trey Deitch, Table of n, a(n) for n = 1..20000 (terms 1..5000 from Enrique Pérez Herrero)
Michel Planat, Riemann hypothesis from the Dedekind psi function, arXiv:1010.3239 [math.GM], 2010.
FORMULA
a(1) = 1, a(n) = a(n-1) + rad(a(n-1)) with rad=A007947, squarefree kernel. - Reinhard Zumkeller, Apr 10 2006
a(n) = 1 + A343048(n). - Antti Karttunen, Nov 14 2024
EXAMPLE
After a(2)=2 the next term must be even, so a(3)=4.
Then a(4) must be even so a(4) = 6.
Now a(5) must be a multiple of 2*3=6, so a(5)=12.
Then a(6)=18, a(7)=24, a(8)=30.
Now a(9) must be a multiple of 2*3*5 = 30, so a(9)=60. And so on.
MAPLE
seq(seq(k*mul(ithprime(i), i=1..n-1), k=1..ithprime(n)-1), n=1..10); # Vladeta Jovovic, Apr 08 2004
a := proc(n) option remember; if n=1 then return 1 fi; a(n-1);
% + convert(numtheory:-factorset(%), `*`) end:
seq(a(n), n=1..42); # after Zumkeller, Peter Luschny, Aug 30 2016
MATHEMATICA
a = 0; Do[ b = n/(EulerPhi[ n ] + 1); If[ b > a, a = b; Print[ n ] ], {n, 1, 10^6} ]
f[n_] := Range[Prime[n + 1] - 1] Times @@ Prime@ Range@ n; Array[f, 7, 0] // Flatten (* Robert G. Wilson v, Jul 22 2015 *)
PROG
(PARI) first(n)=my(v=vector(n), k=1, p=1, P=1); v[1]=1; for(i=2, n, v[i]=P*k++; if(k>p && isprime(k), p=k; P=v[i]; k=1)); v \\ Charles R Greathouse IV, Jul 22 2015
(PARI) is_A060735(n, P=1)={forprime(p=2, , n>(P*=p)||return(1); n%P&&return)} \\ M. F. Hasler, Mar 14 2017
(Python)
from functools import cache;
from sympy import primefactors, prod
@cache
def a(n): return 1 if n == 0 else a(n-1) + prod(primefactors(a(n-1)))
print([a(n) for n in range(42)]) # Trey Deitch, Jun 08 2024
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Robert G. Wilson v, Apr 23 2001
EXTENSIONS
Definition corrected by Franklin T. Adams-Watters, Apr 16 2009
Simpler definition, comments, examples from N. J. A. Sloane, Apr 08 2022
STATUS
approved