login
A101301
The sum of the first n primes, minus n.
6
1, 3, 7, 13, 23, 35, 51, 69, 91, 119, 149, 185, 225, 267, 313, 365, 423, 483, 549, 619, 691, 769, 851, 939, 1035, 1135, 1237, 1343, 1451, 1563, 1689, 1819, 1955, 2093, 2241, 2391, 2547, 2709, 2875, 3047, 3225, 3405, 3595, 3787, 3983, 4181, 4391, 4613, 4839
OFFSET
1,2
COMMENTS
Also: a(n) = sum_{k=1..n} phi(prime(k)).
Partial sums of A006093. - Omar E. Pol, Oct 31 2013
Difference minus n, between the constant term prime(n) for a polynomial P(x) built from the first n primes took as coefficients and the value that such term should have in order to make P(x) divisible by (x-1). See links. - R. J. Cano, Jan 14 2014
Sum of all deficiencies of the first n primes. - Omar E. Pol, Feb 21 2014
FORMULA
a(n)=sum_{k=1..n} (prime(k)-1)
a(n)=A007504(n)-n. - Juri-Stepan Gerasimov, Nov 23 2009
A027424(A000040(n)) < a(n). - Charles R Greathouse IV, Apr 07 2021
MAPLE
seq((sum(phi(ithprime(x)), k=1..n)), n=1..100);
MATHEMATICA
f[n_]:=Plus@@Prime[Range[n]]-n; Table[f[n], {n, 1, 50}] (* Enrique Pérez Herrero, Jun 10 2012 *)
PROG
(Haskell)
a101301 n = a101301_list !! (n-1)
a101301_list = scanl1 (+) a006093_list
-- Reinhard Zumkeller, May 01 2013
(PARI) a(n)=my(s); forprime(p=2, prime(n), s+=p); s-n \\ Charles R Greathouse IV, Oct 31 2013
(PARI) See links.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jorge Coveiro, Dec 22 2004
EXTENSIONS
Name simplified by Juri-Stepan Gerasimov, Nov 23 2009
STATUS
approved