login
A060732
a(n) = a(n-1) + a(n - 1 minus the number of terms of a(k) == (mod 5) so far).
0
1, 2, 3, 4, 5, 9, 14, 23, 28, 51, 74, 125, 153, 181, 306, 380, 686, 839, 992, 1372, 1678, 2517, 3203, 4042, 5720, 7092, 8464, 10142, 12659, 18379, 24099, 28141, 35233, 39275, 51934, 64593, 77252, 89911, 100053, 139328, 174561, 209794, 237935
OFFSET
1,2
MATHEMATICA
m[ 1 ] = 1; m[ 2 ] = 2; m[ 3 ] = 3; a[ 4 ] = 4; m[ 5 ] = 5; m[ n_Integer ] := m[ n ] = Block[ {a = b = c = d = 0}, Do[ Switch[ Mod[ m[ k ], 5 ], 0, a++, 1, b++, 2, c++, 3, d++, 4, e++ ], {k, 1, n - 1} ]; Switch[ Mod[ n, 5 ], 0, m[ n - 1 ] + m[ n - 1 - a ], 1, m[ n - 1 ] + m[ n - 1 - b ], 2, m[ n - 1 ] + m[ n - 1 - c ], 3, m[ n - 1 ] + m[ n - 1 - d ], 4, m[ n - 1 ] + m[ n - 1 - e ] ] ]; Table[ m[ n ], {n, 1, 50} ]
CROSSREFS
Sequence in context: A222435 A222436 A222437 * A068584 A107799 A329049
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Apr 22 2001
STATUS
approved