login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245814
Permutation of natural numbers induced when A091204 is restricted to nonprime numbers: a(n) = 1+A091245(A091204(A018252(n))).
5
1, 2, 4, 5, 3, 9, 8, 16, 6, 11, 7, 21, 22, 39, 18, 15, 29, 10, 34, 13, 24, 33, 76, 38, 14, 48, 42, 44, 46, 81, 20, 19, 37, 54, 32, 92, 60, 23, 63, 71, 25, 99, 28, 233, 30, 50, 98, 70, 157, 17, 79, 31, 89, 49, 101, 191, 86, 91, 12, 161, 94, 171, 193, 56, 167, 43, 143, 41, 353, 58, 75, 78, 113, 102, 68, 190, 125, 67, 119, 47, 130, 72, 146, 52, 27
OFFSET
1,2
FORMULA
a(n) = 1 + A091245(A091204(A018252(n))).
As a composition of related permutations:
a(n) = A245819(A245816(n)).
PROG
(PARI)
allocatemem(123456789);
v014580 = vector(2^18);
v091226 = vector(2^22);
isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
i=0; j=0; n=2; while((n < 2^22), if(isA014580(n), i++; v014580[i] = n; v091226[n] = v091226[n-1]+1, j++; v091226[n] = v091226[n-1]); n++);
A002808(n)={my(k); for(k=0, primepi(n), isprime(n++)&&k--); n}; \\ This function from M. F. Hasler
A018252(n) = if(1==n, 1, A002808(n-1));
A014580(n) = v014580[n];
A091226(n) = v091226[n];
A091245(n) = ((n-A091226(n))-1);
A091204(n) = if(n<=1, n, if(isprime(n), A014580(A091204(primepi(n))), {my(pfs, t, bits, i); pfs=factor(n); pfs[, 1]=apply(t->Pol(binary(A091204(t))), pfs[, 1]); sum(i=1, #bits=Vec(factorback(pfs))%2, bits[i]<<(#bits-i))}));
for(n=1, 10001, write("b245814.txt", n, " ", A245814(n)));
(Scheme) (define (A245814 n) (+ 1 (A091245 (A091204 (A018252 n)))))
CROSSREFS
Inverse: A245813.
Related permutations: A091204, A245816, A245819.
Sequence in context: A026206 A353708 A117606 * A060736 A097292 A269780
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 16 2014
STATUS
approved