Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Aug 18 2014 00:52:14
%S 1,2,4,5,3,9,8,16,6,11,7,21,22,39,18,15,29,10,34,13,24,33,76,38,14,48,
%T 42,44,46,81,20,19,37,54,32,92,60,23,63,71,25,99,28,233,30,50,98,70,
%U 157,17,79,31,89,49,101,191,86,91,12,161,94,171,193,56,167,43,143,41,353,58,75,78,113,102,68,190,125,67,119,47,130,72,146,52,27
%N Permutation of natural numbers induced when A091204 is restricted to nonprime numbers: a(n) = 1+A091245(A091204(A018252(n))).
%H Antti Karttunen, <a href="/A245814/b245814.txt">Table of n, a(n) for n = 1..10001</a>
%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F a(n) = 1 + A091245(A091204(A018252(n))).
%F As a composition of related permutations:
%F a(n) = A245819(A245816(n)).
%o (PARI)
%o allocatemem(123456789);
%o v014580 = vector(2^18);
%o v091226 = vector(2^22);
%o isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from _Charles R Greathouse IV_
%o i=0; j=0; n=2; while((n < 2^22), if(isA014580(n), i++; v014580[i] = n; v091226[n] = v091226[n-1]+1, j++; v091226[n] = v091226[n-1]); n++);
%o A002808(n)={my(k); for(k=0, primepi(n), isprime(n++)&&k--); n}; \\ This function from _M. F. Hasler_
%o A018252(n) = if(1==n, 1, A002808(n-1));
%o A014580(n) = v014580[n];
%o A091226(n) = v091226[n];
%o A091245(n) = ((n-A091226(n))-1);
%o A091204(n) = if(n<=1, n, if(isprime(n), A014580(A091204(primepi(n))), {my(pfs, t, bits, i); pfs=factor(n); pfs[, 1]=apply(t->Pol(binary(A091204(t))), pfs[, 1]); sum(i=1, #bits=Vec(factorback(pfs))%2, bits[i]<<(#bits-i))}));
%o A245814(n) = 1 + A091245(A091204(A018252(n)))
%o for(n=1, 10001, write("b245814.txt", n, " ", A245814(n)));
%o (Scheme) (define (A245814 n) (+ 1 (A091245 (A091204 (A018252 n)))))
%Y Inverse: A245813.
%Y Related permutations: A091204, A245816, A245819.
%Y Cf. A018252, A091245.
%K nonn
%O 1,2
%A _Antti Karttunen_, Aug 16 2014