|
|
A014580
|
|
Binary irreducible polynomials (primes in the ring GF(2)[X]), evaluated at X=2.
|
|
103
|
|
|
2, 3, 7, 11, 13, 19, 25, 31, 37, 41, 47, 55, 59, 61, 67, 73, 87, 91, 97, 103, 109, 115, 117, 131, 137, 143, 145, 157, 167, 171, 185, 191, 193, 203, 211, 213, 229, 239, 241, 247, 253, 283, 285, 299, 301, 313, 319, 333, 351, 355, 357, 361, 369, 375
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Or, binary irreducible polynomials, interpreted as binary vectors, then written in base 10.
2^n - 1 is a term if and only if n = 2 or n is a prime and 2 is a primitive root modulo n. - Jianing Song, May 10 2021
|
|
LINKS
|
|
|
EXAMPLE
|
x^4 + x^3 + 1 -> 16+8+1 = 25. Or, x^4 + x^3 + 1 -> 11001 (binary) = 25 (decimal).
|
|
MATHEMATICA
|
fQ[n_] := Block[{ply = Plus @@ (Reverse@ IntegerDigits[n, 2] x^Range[0, Floor@ Log2@ n])}, ply == Factor[ply, Modulus -> 2] && n != 2^Floor@ Log2@ n]; fQ[2] = True; Select[ Range@ 378, fQ] (* Robert G. Wilson v, Aug 12 2011 *)
Reap[Do[If[IrreduciblePolynomialQ[IntegerDigits[n, 2] . x^Reverse[Range[0, Floor[Log[2, n]]]], Modulus -> 2], Sow[n]], {n, 2, 1000}]][[2, 1]] (* Jean-François Alcover, Nov 21 2016 *)
|
|
PROG
|
|
|
CROSSREFS
|
Number of degree-n irreducible polynomials: A001037, see also A000031.
Table of irreducible factors of n: A256170.
Sequences analyzing the difference between factorization into GF(2)[X] irreducibles and ordinary prime factorization of the corresponding integer: A234741, A234742, A235032, A235033, A235034, A235035, A235040, A236850, A325386, A325559, A325560, A325563, A325641, A325642, A325643.
See A115871 for sequences related to cross-domain congruences.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
David Petry (petry(AT)accessone.com)
|
|
STATUS
|
approved
|
|
|
|