login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325560
a(n) is the number of divisors d of n such that A048720(d,k) = n for some k.
5
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 3, 4, 2, 8, 2, 4, 4, 6, 2, 8, 2, 6, 3, 4, 3, 9, 2, 4, 3, 8, 2, 6, 2, 6, 6, 4, 2, 10, 3, 4, 4, 6, 2, 8, 2, 8, 3, 4, 2, 12, 2, 4, 6, 7, 3, 6, 2, 6, 2, 6, 2, 12, 2, 4, 5, 6, 2, 6, 2, 10, 2, 4, 2, 9, 4, 4, 2, 8, 2, 12, 2, 6, 3, 4, 4, 12, 2, 6, 4, 6, 2, 8, 2, 8, 5
OFFSET
1,2
COMMENTS
a(n) is the number of divisors d of n such that when the binary expansion of d is converted to a (0,1)-polynomial (e.g., 13=1101[2] encodes X^3 + X^2 + 1), that polynomial is a divisor of the (0,1)-polynomial similarly converted from n, when the polynomial division is done over field GF(2).
FORMULA
For all n, A325565(n) <= a(n) <= min(A000005(n), A091220(n)).
EXAMPLE
39 = 3*13 has four divisors 1, 3, 13, 39, of which all other divisors except 13 are counted because we have A048720(1,39) = A048720(39,1) = A048720(3,29) = 39, but A048720(13,u) is not equal to 39 for any u, thus a(39) = 3. See also the example in A325563.
PROG
(PARI) A325560(n) = { my(p = Pol(binary(n))*Mod(1, 2)); sumdiv(n, d, my(q = Pol(binary(d))*Mod(1, 2)); !(p%q)); };
CROSSREFS
Cf. A000005, A048720, A091220, A325559 (positions of 2's), A325563, A325565.
Sequence in context: A365173 A366991 A365680 * A318412 A365208 A322986
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 11 2019
STATUS
approved