login
A365173
The number of divisors d of n such that gcd(d, n/d) is an exponentially odd number (A268335).
5
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4
OFFSET
1,2
COMMENTS
First differs from A252505 at n = 64.
The sum of these divisors is A365174(n).
FORMULA
Multiplicative with a(p^e) = floor((e+5)/4) + floor((e+6)/4) = A004524(e+5).
a(n) <= A000005(n), with equality if and only if n is not a biquadrateful number (A046101).
a(n) >= A034444(n), with equality if and only if n is squarefree (A005117).
a(n) == 1 (mod 2) if and only if n is a square of an exponentially odd number (i.e., a number whose prime factorization include only exponents e such that e == 2 (mod 4)).
From Vaclav Kotesovec, Jan 20 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/(p^(2*s)*(1 + p^(2*s))).
Let f(s) = Product_{p prime} (1 - 1/(p^(2*s)*(1 + p^(2*s))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/(p^2*(1 + p^2))) = 0.937494282731300250789438325050116436995101826036120273493270589183132928...,
f'(1) = f(1) * Sum_{p prime} (4*p^2 + 2) * log(p) / (p^6 + 2*p^4 - 1) = f(1) * 0.192452062257404507109731932640803706644036700262364333369815000973104583...
and gamma is the Euler-Mascheroni constant A001620. (End)
MATHEMATICA
f[p_, e_] := Floor[(e + 5)/4] + Floor[(e + 6)/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecprod(apply(x -> (x+5)\4 + (x+6)\4, factor(n)[, 2]));
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + X^2 - X^4)/((1 - X)^2*(1 + X^2)))[n], ", ")) \\ Vaclav Kotesovec, Jan 20 2024
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Aug 25 2023
STATUS
approved