OFFSET
1,2
COMMENTS
The number of these divisors is A365171(n).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
Multiplicative with a(p^e) = (p^(e+2) - 1)/(p^2 - 1) if e is even, and (1 + p^(2*floor((e+1)/4) + 1))*(p^(2*floor(e/4)+2) - 1)/(p^2 - 1) if e is odd.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/(2 * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^5)) = 0.696082796052... .
MATHEMATICA
f[p_, e_] := If[EvenQ[e], (p^(e + 2) - 1)/(p^2 - 1), (1 + p^(2*Floor[(e + 1)/4] + 1))*(p^(2*Floor[e/4] + 2) - 1)/(p^2 - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(e%2, (1 + p^(2*((e+1)\4)+1))*(p^(2*(e\4)+2) - 1)/(p^2 - 1), (p^(e+2) - 1)/(p^2 - 1))); }
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Aug 25 2023
STATUS
approved