login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378434
Arithmetic mean between the Dirichlet inverses of {sum of unitary divisors} and {sum of squarefree divisors}.
5
1, -3, -4, 5, -6, 12, -8, -9, 9, 18, -12, -20, -14, 24, 24, 16, -18, -27, -20, -30, 32, 36, -24, 36, 20, 42, -24, -40, -30, -72, -32, -30, 48, 54, 48, 48, -38, 60, 56, 54, -42, -96, -44, -60, -54, 72, -48, -64, 35, -60, 72, -70, -54, 72, 72, 72, 80, 90, -60, 120, -62, 96, -72, 56, 84, -144, -68, -90, 96, -144, -72, -90
OFFSET
1,2
COMMENTS
Arithmetic mean between A158523 and A178450.
Apparently differs from A378433 at positions given by A048111: 16, 32, 36, 48, 64, 72, 80, 81, 96, ...
LINKS
FORMULA
a(n) = (1/2) * (A158523(n)+A178450(n)).
PROG
(PARI)
A158523(n) = { my(f = factor(n)); prod(i = 1, #f~, (-1)^f[i, 2]*(f[i, 1]+1)*f[i, 1]^(f[i, 2]-1)); }; \\ From A158523
A178450(n) = { my(f=factor(n)); prod(i=1, #f~, if(!(f[i, 2]%2), 2*(f[i, 1]^(f[i, 2]/2)), -(1+f[i, 1])*(f[i, 1]^((f[i, 2]-1)/2)))); };
A378434(n) = ((A158523(n)+A178450(n))/2);
CROSSREFS
Cf. A034448, A048111, A048250, A158523, A178450, A325973, A378433, A378435 (Dirichlet inverse).
Sequence in context: A191750 A346613 A378433 * A034448 A365211 A365172
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 26 2024
STATUS
approved