login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191750
Dirichlet convolution of A000012 with A007947.
3
1, 3, 4, 5, 6, 12, 8, 7, 7, 18, 12, 20, 14, 24, 24, 9, 18, 21, 20, 30, 32, 36, 24, 28, 11, 42, 10, 40, 30, 72, 32, 11, 48, 54, 48, 35, 38, 60, 56, 42, 42, 96, 44, 60, 42, 72, 48, 36, 15, 33, 72, 70, 54, 30, 72, 56, 80, 90, 60, 120, 62, 96, 56, 13, 84, 144, 68, 90, 96, 144, 72
OFFSET
1,2
COMMENTS
The squarefree kernel of n is sometimes called rad(n).
Sequence is multiplicative with a(p^e) = 1 + p*e.
Dirichlet convolution of A000005 with the function of absolute values of A097945. - R. J. Mathar, Jul 12 2011
Dirichlet convolution of phi(n)*mu(n)^2 with tau(n). - Richard L. Ollerton, May 07 2021
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1837 from Vincenzo Librandi)
FORMULA
a(n) = Sum_{d|n} rad(d) = Sum_{d|n} A007947(d).
a(n) <= sigma_1(n) = A000203(n); equality holds if n is a squarefree number (A005117).
Dirichlet g.f.: zeta^2(s)*Product_{primes p} (1+p^(1-s)-p^(-s)). - R. J. Mathar, Jul 12 2011
G.f.: Sum_{k>=1} rad(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Nov 06 2018
a(n) = Sum_{d|n} mu(d)^2*phi(d)*tau(n/d). - Ridouane Oudra, Nov 19 2019
From Vaclav Kotesovec, Jun 19 2020: (Start)
Dirichlet g.f.: zeta(s)^2 * zeta(s-1) / zeta(2*s-2) * Product_{primes p} (1 - 1/(p^s + p)).
Dirichlet g.f.: zeta(s)^2 * zeta(s-1) * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)).
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^2 / 12, where c = A065463 = Product_{p prime} (1 - 1/(p*(p+1))) = 0.70444220099916559... (End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))^2*tau(gcd(n,k)).
a(n) = Sum_{k=1..n} mu(gcd(n,k))^2*tau(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
EXAMPLE
The divisors of 12 are 1,2,3,4,6 and 12, the squarefree kernels of these numbers are 1,2,3,2,6 and 6, so a(12) = 1+2+3+2+6+6 = 20.
MAPLE
with(numtheory): A191750 := n -> add(ilcm(op(factorset(k))), k=divisors(n)):
seq(A191750(i), i=1..80); # Peter Luschny, Jun 23 2011
MATHEMATICA
rad[n_]:=Times@@(FactorInteger[n][[All, 1]]); A191750[n_]:=Plus@@rad/@Divisors[n]; Array[A191750, 50]
a[1] = 1; a[n_] := Times @@ ((1 + First[#] * Last[#])& /@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
PROG
(PARI) rad(n)=local(p); p=factor(n)[, 1]; prod(i=1, length(p), p[i]);
A191750(n)=sumdiv(n, d, rad(d))
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + p*X - X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Jun 19 2020
(Magma) A007947:=func< n | &*PrimeDivisors(n) >; A191750:=func< n | &+[ A007947(d): d in Divisors(n) ] >; [ A191750(n): n in [1..80] ]; // Klaus Brockhaus, Jun 27 2011
CROSSREFS
Cf. A007947, A000012 (all 1's sequence), A005117, A073355.
Sequence in context: A154664 A371242 A366743 * A346613 A378433 A378434
KEYWORD
nonn,mult,easy
AUTHOR
STATUS
approved