OFFSET
1,2
COMMENTS
If n = Product p(i)^r(i) and d = Product p(i)^s(i), each s(i) has a digit a<=b in its 4-ary expansion everywhere that the corresponding r(i) has a digit b, then d is a 4-infinitary-divisor of n.
LINKS
FORMULA
Multiplicative: If e = sum d_k 4^k, then a(p^e) = prod (d_k+1). - Christian G. Bower, May 19 2005
a(1) = 1; for n > 1, a(n) = A268444(A067029(n)) * a(A028234(n)). [After _Christian G. Bower's 2005 formula.] - Antti Karttunen, May 28 2017
EXAMPLE
2^4*3 is a 4-infinitary-divisor of 2^5*3^2 because 2^4*3 = 2^10*3^1 and 2^5*3^2 = 2^11*3^2 in 4-ary expanded power. All corresponding digits satisfy the condition. 1<=1, 0<=1, 1<=2.
MAPLE
A074848 := proc(n) if n= 1 then 1; else ifa := ifactors(n)[2] ; a := 1; for f in ifa do e := convert(op(2, f), base, 4) ; a := a*mul(d+1, d=e) ; end do: end if; end proc:
seq(A074848(n), n=1..70) ; # R. J. Mathar, Feb 08 2011
MATHEMATICA
f[p_, e_] := Times @@ (IntegerDigits[e, 4] + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 09 2020 *)
PROG
(PARI)
A268444(n) = { my(m=1, d); while(n, d = (n%4); m *= (1+d); n = (n-d)/4); m; };
A074848(n) = factorback(apply(e -> A268444(e), factorint(n)[, 2])) \\ (After A037445) - Antti Karttunen, May 28 2017
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Yasutoshi Kohmoto, Sep 10 2002
EXTENSIONS
More terms from Antti Karttunen, May 28 2017
Name shortened by Amiram Eldar, Sep 09 2020
STATUS
approved