login
A074850
Partial products of successive digits in the decimal expansion of Pi.
3
3, 3, 12, 12, 60, 540, 1080, 6480, 32400, 97200, 486000, 3888000, 34992000, 244944000, 2204496000, 6613488000, 13226976000, 39680928000, 317447424000, 1269789696000, 7618738176000, 15237476352000, 91424858112000
OFFSET
1,1
COMMENTS
Because 33rd digit in the decimal expansion of Pi, pi(33) = 0, all a(n>32) = 0.
Partial sums of digits of the decimal expansion of Pi are in A046974.
FORMULA
a(n) = pi(1)*...*pi(n); pi(n)=A000796(n).
a(n) = A073055(n), n>0. - R. J. Mathar, Dec 15 2020
EXAMPLE
a(3)=12 because pi(1)=3, pi(1)=1, pi(3)=4 and a(3)=3*1*4=12.
MATHEMATICA
ppi={3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8}; Table[Product[ppi[[i]], {i, n}], {n, 1, 33}]
Rest[FoldList[Times, 1, RealDigits[Pi, 10, 30][[1]]]] (* Harvey P. Dale, Jan 23 2015 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Zak Seidov, Sep 10 2002
STATUS
approved