login
A075780
Triangle T(n,k) = f(n,k,n-2), n >= 2, 1 <= k <= n-1, where f is given below.
4
0, 3, 3, 12, 14, 12, 30, 45, 45, 30, 60, 114, 138, 114, 60, 105, 245, 357, 357, 245, 105, 168, 468, 808, 960, 808, 468, 168, 252, 819, 1647, 2286, 2286, 1647, 819, 252, 360, 1340, 3090, 4935, 5740, 4935, 3090, 1340, 360, 495, 2079, 5423, 9834, 13090, 13090, 9834, 5423
OFFSET
2,2
FORMULA
f(n, p, k) = binomial(n, k)*hypergeom([1-k, -p, p-n], [1-n, 1], 1).
MAPLE
f := proc(n, p, k) convert( binomial(n, k)*hypergeom([1-k, -p, p-n], [1-n, 1], 1), `StandardFunctions`); end;
MATHEMATICA
t[n_, k_] := n*(n-1)/2*HypergeometricPFQ[{-k, 3-n, k-n}, {1, 1-n}, 1]; Table[t[n, k], {n, 2, 12}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
CROSSREFS
Cf. A014410 and A007318 for f(n, k, n), A075779 and A075798 for f(n, k, n-1) and A075780 and A075837 for f(n, k, n-2).
Sequence in context: A117856 A074850 A073055 * A292515 A078666 A290438
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Oct 17 2002
STATUS
approved