login
A075783
Additive perfect powers: sum-of-digits is also a perfect power.
1
1, 4, 8, 9, 27, 36, 81, 100, 121, 125, 144, 169, 196, 216, 225, 243, 324, 400, 441, 484, 512, 529, 900, 961, 1000, 1331, 1521, 1681, 2025, 2304, 2601, 3364, 3481, 3600, 3969, 4489, 4624, 5776, 5929, 7225, 7396, 7569, 7776, 8000, 8100, 8649, 8836, 9025, 10000
OFFSET
1,2
LINKS
EXAMPLE
121 is OK because sum-of-digits=1+2+1=4 is perfect power.
MATHEMATICA
perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; Select[Range@ 10000, perfectPowerQ@ # && perfectPowerQ@ Total@ IntegerDigits@ # &] (* Michael De Vlieger, Oct 02 2015, after Ant King at A001597 *)
PROG
(PARI) isok(n) = (n==1 || ispower(n)) && (sumdigits(n)==1 || ispower(sumdigits(n))) \\ Dana Jacobsen, Oct 01 2015
(Perl) use ntheory ":all"; my @seq = grep { ($_==1 || is_power($_)) && (sumdigits($_) == 1 || is_power(sumdigits($_))) } 1..1000; say "@seq"; # Dana Jacobsen, Oct 01 2015
CROSSREFS
Sequence in context: A171468 A114377 A115697 * A098121 A115656 A076705
KEYWORD
easy,nonn,base
AUTHOR
Zak Seidov, Oct 10 2002
EXTENSIONS
More terms from Alois P. Heinz, Sep 06 2015
STATUS
approved