login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325558
Number of compositions of n with equal circular differences up to sign.
9
1, 2, 4, 5, 6, 10, 8, 16, 13, 16, 18, 32, 20, 30, 30, 57, 34, 52, 46, 96, 74, 86, 84, 174, 119, 170, 192, 306, 244, 332, 372, 628, 560, 694, 812, 1259, 1228, 1566, 1852, 2696, 2806, 3538, 4260, 5894, 6482, 8098, 9890, 13392, 15049, 18706, 23018, 30298, 35198
OFFSET
1,2
COMMENTS
A composition of n is a finite sequence of positive integers summing to n.
The circular differences of a composition c of length k are c_{i + 1} - c_i for i < k and c_1 - c_i for i = k. For example, the circular differences of (1,2,1,3) are (1,-1,2,-2).
EXAMPLE
The a(1) = 1 through a(8) = 16 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (12) (13) (14) (15) (16) (17)
(21) (22) (23) (24) (25) (26)
(111) (31) (32) (33) (34) (35)
(1111) (41) (42) (43) (44)
(11111) (51) (52) (53)
(222) (61) (62)
(1212) (1111111) (71)
(2121) (1232)
(111111) (1313)
(2123)
(2222)
(2321)
(3131)
(3212)
(11111111)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], SameQ@@Abs[Differences[Append[#, First[#]]]]&]], {n, 15}]
PROG
(PARI)
step(R, n, s)={matrix(n, n, i, j, if(i>j, if(j>s, R[i-j, j-s]) + if(j+s<=n, R[i-j, j+s])) )}
w(n, k, s)={my(R=matrix(n, n, i, j, i==j&&abs(i-k)==s), t=0); while(R, R=step(R, n, s); t+=R[n, k]); t}
a(n) = {numdiv(max(1, n)) + sum(s=1, n-1, sum(k=1, n, w(n, k, s)))} \\ Andrew Howroyd, Aug 22 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 11 2019
EXTENSIONS
a(26)-a(42) from Lars Blomberg, May 30 2019
Terms a(43) and beyond from Andrew Howroyd, Aug 22 2019
STATUS
approved