Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Aug 24 2019 11:51:15
%S 1,2,4,5,6,10,8,16,13,16,18,32,20,30,30,57,34,52,46,96,74,86,84,174,
%T 119,170,192,306,244,332,372,628,560,694,812,1259,1228,1566,1852,2696,
%U 2806,3538,4260,5894,6482,8098,9890,13392,15049,18706,23018,30298,35198
%N Number of compositions of n with equal circular differences up to sign.
%C A composition of n is a finite sequence of positive integers summing to n.
%C The circular differences of a composition c of length k are c_{i + 1} - c_i for i < k and c_1 - c_i for i = k. For example, the circular differences of (1,2,1,3) are (1,-1,2,-2).
%H Andrew Howroyd, <a href="/A325558/b325558.txt">Table of n, a(n) for n = 1..200</a>
%H Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a>
%e The a(1) = 1 through a(8) = 16 compositions:
%e (1) (2) (3) (4) (5) (6) (7) (8)
%e (11) (12) (13) (14) (15) (16) (17)
%e (21) (22) (23) (24) (25) (26)
%e (111) (31) (32) (33) (34) (35)
%e (1111) (41) (42) (43) (44)
%e (11111) (51) (52) (53)
%e (222) (61) (62)
%e (1212) (1111111) (71)
%e (2121) (1232)
%e (111111) (1313)
%e (2123)
%e (2222)
%e (2321)
%e (3131)
%e (3212)
%e (11111111)
%t Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Abs[Differences[Append[#,First[#]]]]&]],{n,15}]
%o (PARI)
%o step(R,n,s)={matrix(n, n, i, j, if(i>j, if(j>s, R[i-j, j-s]) + if(j+s<=n, R[i-j, j+s])) )}
%o w(n,k,s)={my(R=matrix(n,n,i,j,i==j&&abs(i-k)==s), t=0); while(R, R=step(R,n,s); t+=R[n,k]); t}
%o a(n) = {numdiv(max(1,n)) + sum(s=1, n-1, sum(k=1, n, w(n,k,s)))} \\ _Andrew Howroyd_, Aug 22 2019
%Y Cf. A000079, A008965, A047966, A049988, A098504, A173258, A175342, A325553, A325557, A325588, A325589.
%K nonn
%O 1,2
%A _Gus Wiseman_, May 11 2019
%E a(26)-a(42) from _Lars Blomberg_, May 30 2019
%E Terms a(43) and beyond from _Andrew Howroyd_, Aug 22 2019