login
A325556
Number of necklace compositions of n with distinct circular differences up to sign.
5
1, 1, 1, 1, 1, 1, 3, 7, 9, 13, 25, 27, 51, 63, 95, 123, 179, 205, 305, 409, 559, 715, 1009, 1337, 1869
OFFSET
1,7
COMMENTS
A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations.
The circular differences of a composition c of length k are c_{i + 1} - c_i for i < k and c_1 - c_i for i = k. For example, the circular differences of (1,2,1,3) are (1,-1,2,-2).
EXAMPLE
The a(1) = 1 through a(10) = 13 necklace compositions:
(1) (2) (3) (4) (5) (6) (7) (8) (9) (A)
(124) (125) (126) (127)
(142) (134) (162) (136)
(143) (1125) (145)
(152) (1134) (154)
(1124) (1143) (163)
(1142) (1152) (172)
(1224) (235)
(1422) (253)
(1126)
(1162)
(1225)
(1522)
MATHEMATICA
neckQ[q_]:=Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@Abs[Differences[Append[#, First[#]]]]&&neckQ[#]&]], {n, 15}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, May 11 2019
STATUS
approved