

A174840


Least k such that the primes 3 to prime(k+1) form a complete residue system (mod prime(n)).


0



3, 7, 9, 13, 26, 26, 42, 32, 65, 63, 84, 74, 89, 162, 110, 126, 177, 169, 144, 171, 214, 196, 237, 238, 323, 297, 363, 344, 327, 515, 441, 543, 420, 481, 612, 494, 604, 543, 646, 552, 645, 644, 519, 742, 593, 737, 644, 851, 1012, 787, 1204, 727, 899, 800, 1046
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

If the value of the terminal prime is given rather than its index in the list of odd primes, the sequence becomes 7 19 29 43 103 103 191 137 347 311 439
In other words, the odd primes no larger than 7 form a complete residue set mod 3, the odd primes no larger than 19 form a complete residue set mod 5, and so forth


LINKS



MATHEMATICA

Table[p=Prime[n]; k=1; While[u=Union[Mod[Prime[Range[2, k]], p]]; u != Range[0, p1], k++ ]; k1, {n, 2, 100}] (* T. D. Noe, Apr 02 2010 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS

Corrected and extended by T. D. Noe, Apr 02 2010


STATUS

approved



