The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058943 Coefficients of irreducible polynomials over GF(2) listed in lexicographic order. 22
 10, 11, 111, 1011, 1101, 10011, 11001, 11111, 100101, 101001, 101111, 110111, 111011, 111101, 1000011, 1001001, 1010111, 1011011, 1100001, 1100111, 1101101, 1110011, 1110101, 10000011, 10001001, 10001111, 10010001 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Church's table extends through degree 11. REFERENCES R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983, Table C, pp. 553-555. LINKS T. D. Noe, Table of n, a(n) for n=1..1377 (through degree 13) R. Church, Tables of irreducible polynomials for the first four prime moduli, Annals Math., 36 (1935), 198-209. F. Ruskey, Irreducible and Primitive Polynomials over GF(2) Index entries for sequences containing GF(2)[X]-polynomials EXAMPLE The first few are x, x+1; x^2+x+1; x^3+x+1, x^3+x^2+1; ... Note that x is irreducible but not primitive. MATHEMATICA Do[a = Reverse[ IntegerDigits[n, 2]]; b = {0}; l = Length[a]; k = 1; While[k < l + 1, b = Append[b, a[[k]]*x^(k - 1) ]; k++ ]; b = Apply[Plus, b]; c = Factor[b, Modulus -> 2]; If[b == c, Print[ FromDigits[ IntegerDigits[n, 2]]]], {n, 3, 250, 2} ] PROG (PARI) seq(N, p=2, maxdeg=oo) = { my(a = List(), k=0, d=0); while (d++ <= maxdeg, for (n=p^d, 2*p^d-1, my(f=Mod(Pol(digits(n, p)), p)); if(polisirreducible(f), listput(a, subst(lift(f), 'x, 10)); k++); if(k >= N, break(2)))); Vec(a); }; seq(27) \\ Gheorghe Coserea, May 28 2018 CROSSREFS Cf. A000020, A001037, A011260, A058944-A058948. Converted to decimal: A014580. Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): this sequence, A058944, A058948, A058945, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951. Sequence in context: A287626 A059458 A063697 * A222473 A361990 A335801 Adjacent sequences: A058940 A058941 A058942 * A058944 A058945 A058946 KEYWORD nonn,easy,nice AUTHOR N. J. A. Sloane, Jan 13 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 20:25 EDT 2024. Contains 375955 sequences. (Running on oeis4.)