|
|
A058943
|
|
Coefficients of irreducible polynomials over GF(2) listed in lexicographic order.
|
|
22
|
|
|
10, 11, 111, 1011, 1101, 10011, 11001, 11111, 100101, 101001, 101111, 110111, 111011, 111101, 1000011, 1001001, 1010111, 1011011, 1100001, 1100111, 1101101, 1110011, 1110101, 10000011, 10001001, 10001111, 10010001
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Church's table extends through degree 11.
|
|
REFERENCES
|
R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983, Table C, pp. 553-555.
|
|
LINKS
|
|
|
EXAMPLE
|
The first few are x, x+1; x^2+x+1; x^3+x+1, x^3+x^2+1; ... Note that x is irreducible but not primitive.
|
|
MATHEMATICA
|
Do[a = Reverse[ IntegerDigits[n, 2]]; b = {0}; l = Length[a]; k = 1; While[k < l + 1, b = Append[b, a[[k]]*x^(k - 1) ]; k++ ]; b = Apply[Plus, b]; c = Factor[b, Modulus -> 2]; If[b == c, Print[ FromDigits[ IntegerDigits[n, 2]]]], {n, 3, 250, 2} ]
|
|
PROG
|
(PARI)
seq(N, p=2, maxdeg=oo) = {
my(a = List(), k=0, d=0);
while (d++ <= maxdeg,
for (n=p^d, 2*p^d-1, my(f=Mod(Pol(digits(n, p)), p));
if(polisirreducible(f), listput(a, subst(lift(f), 'x, 10)); k++);
if(k >= N, break(2))));
Vec(a);
};
|
|
CROSSREFS
|
Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): this sequence, A058944, A058948, A058945, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|