login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058946
Coefficients of monic irreducible polynomials over GF(7) listed in lexicographic order.
15
10, 11, 12, 13, 14, 15, 16, 101, 102, 104, 113, 114, 116, 122, 123, 125, 131, 135, 136, 141, 145, 146, 152, 153, 155, 163, 164, 166, 1002, 1003, 1004, 1005, 1011, 1016, 1021, 1026, 1032, 1035, 1041, 1046, 1052, 1055, 1062, 1065, 1101, 1103, 1112, 1115
OFFSET
1,1
COMMENTS
Church's table extends through degree 3.
REFERENCES
R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983, Table C, pp. 560-562.
LINKS
T. D. Noe, Table of n, a(n) for n=1..728 (through degree 4)
R. Church, Tables of irreducible polynomials for the first four prime moduli, Annals Math., 36 (1935), 198-209.
MATHEMATICA
A058946 = Union[ Reap[ Do[ a = Reverse[ IntegerDigits[n, 7]]; b = {0}; la = Length[a]; k = 1; While[k < la + 1, b = Append[b, a[[k]]*x^(k - 1)]; k++]; b = Plus @@ b; c = Factor[b, Modulus -> 7]; id = IntegerDigits[n, 7]; If[b == c && (id == {1, 0} || id[[-1]] != 0), Sow[ FromDigits[id]]], {n, 7, 450}]][[2, 1]]](* Jean-François Alcover, Feb 13 2012, after A058943 *)
CROSSREFS
Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, this sequence. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.
Sequence in context: A124367 A008711 A008710 * A118379 A174397 A297266
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Jan 13 2001
EXTENSIONS
More terms from David Wasserman, May 23 2002
STATUS
approved