login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361990
Numbers that are both the concatenation of a Fibonacci number and a square and the concatenation of a square and a Fibonacci number.
1
10, 11, 134, 1144, 1440, 1441, 1961, 8121, 14489, 54761, 116641, 144144, 148841, 168121, 313689, 1964181, 3249001, 14932841, 21436921, 21622521, 23164841, 84272489, 89870489, 176475025, 312033961, 591948921, 1326416489, 1392872041, 1493772841, 1877996161, 2120602521, 2129822521, 2165971689
OFFSET
1,1
COMMENTS
Leading 0's are not allowed, so the first number concatenated cannot be 0.
Sequence based on a suggestion by ChatGPT.
LINKS
EXAMPLE
a(3) = 134 is a term because it is the concatenation of A000045(7) = 13 and 2^2 = 4, and also the concatenation of 1^2 = 1 and A000045(9) = 34.
MAPLE
icat:= proc(n, m) if m = 0 then n*10 else n*10^(1+ilog10(m))+m fi end proc:
for i from 1 while length(combinat:-fibonacci(i))<9 do od:
f8:= [seq(combinat:-fibonacci(n), n=2..i-1)]:
s8:= [seq(i^2, i=1..9999)]:
f0:= [0, op(f8)]: s0:= {0, op(s8)}:
S1:= select(t -> t < 10^9, {seq(seq(icat(a, b), a=f8), b=s0)}):
S2:= select(t -> t < 10^9, {seq(seq(icat(a, b), a=s8), b=f0)}):
sort(convert(S1 intersect S2, list));
PROG
(Python)
from math import isqrt
from itertools import count, islice
from sympy.ntheory.primetest import is_square
from sympy import fibonacci
def A361990_gen(): # generator of terms
for l in count(2):
c = set()
for i in range(1, isqrt(10**(l-1)-1)+1):
i2 = i**2
k = 10**(l-len(str(i2))-1)
for j in count(0):
f = int(fibonacci(j))
if f>=10*k:
break
if (f==0 and k==1) or f>=k:
n = i2*10*k+f
for w in range(1, len(str(n))):
w2 = 10**(w-1)
a, b = divmod(n, w2*10)
if w==1 or b>=w2:
if (is_square(b) and (is_square(r:=5*a**2-4) or is_square(r+8))):
c.add(n)
yield from sorted(c)
A361990_list = list(islice(A361990_gen(), 30)) # Chai Wah Wu, Apr 05 2023
CROSSREFS
Sequence in context: A063697 A058943 A222473 * A335801 A363835 A041217
KEYWORD
nonn,base
AUTHOR
Robert Israel, Apr 02 2023
EXTENSIONS
Although this was originally suggested by an AI program, it has been fully checked by the OEIS Editors - N. J. A. Sloane, Oct 19 2023
STATUS
approved