login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A361993
(2,1)-block array, B(2,1), of the Wythoff array (A035513), read by descending antidiagonals.
5
5, 9, 15, 14, 25, 26, 23, 40, 43, 36, 37, 65, 69, 59, 47, 60, 105, 112, 95, 77, 57, 97, 170, 181, 154, 124, 93, 68, 157, 275, 293, 249, 201, 150, 111, 78, 254, 445, 474, 403, 325, 243, 179, 127, 89, 411, 720, 767, 652, 526, 393, 290, 205, 145, 99, 665, 1165
OFFSET
1,1
COMMENTS
We begin with a definition. Suppose that W = (w(i,j)), where i >= 1 and j >= 1, is an array of numbers such that if m and n satisfy 1 <= m < n, then there exists k such that w(m,k+h) < w(n,h+1) < w(m,k+h+1) for every h >= 0. Then W is a row-splitting array. The array B(2,1) is a row-splitting array. The rows of B(2,1) are linearly recurrent with signature (1,1); the columns are linearly recurrent with signature (1,1,-1). The order array (as defined in A333029) of B(2,1) is A361995.
FORMULA
B(2,1) = (b(i,j)), where b(i,j) = w(2i-1,j) + w(2i,j) for i >= 1, j >= 1, where (w(i,j)) is the Wythoff array (A035513).
b(i,j) = F(j+1) ([2 i r] + [(2 i - 1) r]) + (4 i - 3) F(j), where F = A000045, the Fibonacci numbers, and r = (1+sqrt(5))/2, the golden ratio, A001622, and [ ] = floor.
EXAMPLE
Corner of B(2,1):
5 9 14 23 37 60 97 157 ...
15 25 40 65 105 170 275 445 ...
26 43 69 112 181 293 474 767 ...
36 59 95 154 249 403 652 1055 ...
47 77 124 202 325 526 851 1377 ...
...
(column 1 of A035513) = (1,4,6,9,12,14,17,19,...), so (column 1 of B(2,1)) = (5,15,26,36,...);
(column 2 of A000027) = (2,7,10,15,20,23,28,31,...), so (column 2 of B(2,1)) = (9,25,43,59,...).
MATHEMATICA
f[n_] := Fibonacci[n]; r = GoldenRatio;
zz = 10; z = 13;
w[n_, k_] := f[k + 1] Floor[n*r] + (n - 1) f[k]
t[h_, k_] := w[2 h - 1, k] + w[2 h, k];
Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A361993 sequence *)
TableForm[Table[t[h, k], {h, 1, zz}, {k, 1, z}]] (* A361993 array *)
CROSSREFS
Cf. A000045, A001622, A035513, A080164, A361975, A361992 (array B(1,2)), A361994 (array B(2,2)).
Sequence in context: A331556 A188358 A228218 * A314993 A314994 A106503
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Apr 04 2023
STATUS
approved