login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361989
a(n) is the sum of the Fibonacci numbers missing from the dual Zeckendorf representation of n; a(0) = 0, and for n > 0, a(n) = A022290(A035327(A003754(n+1))).
4
0, 0, 1, 0, 2, 1, 0, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
OFFSET
0,5
COMMENTS
We consider that a Fibonacci number is missing from the dual Zeckendorf representation of a number if it does not appear in this representation and a larger Fibonacci number appears in it.
The dual Zeckendorf representation is also known as the lazy Fibonacci representation (see A356771 for further details).
This sequence can also be seen as an irregular table T(n, k), n > 0, k = 1..A000045(n), where T(n, k) = A000045(n) - k.
a(n-1) for n>=1 is the starting position of the first occurrence of one of the longest words w in the Fibonacci word A003849 such that no length-n factor of w is repeated. The length of such words is 2n. (See links) - Gandhar Joshi, Mar 19 2024
FORMULA
a(n) = A000045(A072649(n)) - A194029(n) for n > 0.
a(n) = A130312(n) - A194029(n) for n > 0.
EXAMPLE
For n = 42:
- using F(k) = A000045(k),
- the dual Zeckendorf representation of 42 is F(8) + F(7) + F(5) + F(3) + F(2),
- the numbers F(6) and F(4) are missing,
- so a(42) = F(6) + F(4) = 8 + 3 = 11.
.
As an irregular triangle the sequence begins:
0;
0;
1, 0;
2, 1, 0;
4, 3, 2, 1, 0;
7, 6, 5, 4, 3, 2, 1, 0;
12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0;
...
PROG
(PARI) for (n = 1, 9, for (k = 1, f = fibonacci(n), print1 (f-k", ")))
KEYWORD
nonn,base,tabf
AUTHOR
Rémy Sigrist, Apr 02 2023
STATUS
approved