login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361986
a(1) = 1, a(2) = 3; a(n) = n^2 * Sum_{d|n, d < n} (-1)^(n/d) a(d) / d^2.
5
1, 3, -9, 28, -25, -27, -49, 224, 0, -75, -121, -252, -169, -147, 225, 1792, -289, 0, -361, -700, 441, -363, -529, -2016, 0, -507, 0, -1372, -841, 675, -961, 14336, 1089, -867, 1225, 0, -1369, -1083, 1521, -5600, -1681, 1323, -1849, -3388, 0, -1587, -2209, -16128, 0, 0, 2601, -4732, -2809, 0, 3025, -10976
OFFSET
1,2
LINKS
FORMULA
a(n) is multiplicative with a(2) = 3, a(2^e) = 7*2^(3*e-4) if e>1. a(p) = -p^2, a(p^e) = 0 if e>1, p>2.
G.f. A(x) satisfies -x * (1 - x) = Sum_{k>=1} (-1)^k * k^2 * A(x^k).
MATHEMATICA
f[p_, e_] := If[e == 1, -p^2, 0]; f[2, e_] := If[e == 1, 3, 7*2^(3*e-4)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 09 2023 *)
CROSSREFS
Partial sums give A361981.
Cf. A359485.
Sequence in context: A175129 A336793 A102558 * A022767 A015638 A032092
KEYWORD
sign,mult
AUTHOR
Seiichi Manyama, Apr 02 2023
STATUS
approved