login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361985
a(1) = 1, a(2) = 1; a(n) = n * Sum_{d|n, d < n} (-1)^(n/d) a(d) / d.
3
1, 1, -3, 6, -5, -3, -7, 24, 0, -5, -11, -18, -13, -7, 15, 96, -17, 0, -19, -30, 21, -11, -23, -72, 0, -13, 0, -42, -29, 15, -31, 384, 33, -17, 35, 0, -37, -19, 39, -120, -41, 21, -43, -66, 0, -23, -47, -288, 0, 0, 51, -78, -53, 0, 55, -168, 57, -29, -59, 90, -61, -31, 0, 1536, 65, 33, -67, -102, 69, 35, -71, 0, -73, -37, 0
OFFSET
1,3
LINKS
FORMULA
a(n) is multiplicative with a(2) = 1, a(2^e) = 6*4^(e-2) if e>1. a(p) = -p, a(p^e) = 0 if e>1, p>2.
G.f. A(x) satisfies -x * (1 - x) = Sum_{k>=1} (-1)^k * k * A(x^k).
MATHEMATICA
f[p_, e_] := If[e == 1, -p, 0]; f[2, e_] := If[e == 1, 1, 6*4^(e-2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 09 2023 *)
CROSSREFS
Partial sums give A359479.
Cf. A359484.
Sequence in context: A099874 A011223 A188670 * A346602 A102621 A289504
KEYWORD
sign,mult
AUTHOR
Seiichi Manyama, Apr 02 2023
STATUS
approved