login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336793
Incrementally largest values of minimal positive y satisfying the equation x^2 - D*y^2 = -2, where D is an odd prime number.
3
1, 3, 9, 27, 747, 36321, 2900979, 5843427, 563210019, 11516632737, 48957047673, 953426773899, 23440805582361, 27491112569139, 734940417828177, 1270701455204457, 106719437154440984241, 292398373544007804918339, 62392836359922644036329593, 607918712560763608313068257
OFFSET
1,2
COMMENTS
For the corresponding numbers D see A336792.
LINKS
EXAMPLE
For D=3, the least positive y for which x^2-D*y^2=-2 has a solution is 1. The next prime, D, for which x^2-D*y^2=-2 has a solution is 11, but the smallest positive y in this case is also 1, which is equal to the previous record y. So 11 is not a term.
The next prime, D, after 11 for which x^2-D*y^2=-2 has a solution is 19 and the least positive y for which it has a solution is y=3, which is larger than 1, so it is a new record y value. So 19 is a term of A336792 and 3 is a term of this sequence.
CROSSREFS
Sequence in context: A018924 A061582 A175129 * A102558 A361986 A022767
KEYWORD
nonn
AUTHOR
Christine Patterson, Oct 14 2020
STATUS
approved