OFFSET
1,1
COMMENTS
For the corresponding y values see A336793.
For solutions of this Diophantine equation it is sufficient to consider the odd primes p(n) := A007520(n), for n >= 1, the primes 3 (mod 8). Also prime 2 has the fundamental solution (x, y) = (0, 1). If there is a solution for p(n) then there is only one infinite family of solutions because there is only one representative parallel primitive binary quadratic form for Discriminant Disc = 4*p(n) and representation k = -2. Only proper solutions can occur. The conjecture is that each p(n) leads to solutions. For the fundamental solutions (with prime 2) see A339881 and A339882. - Wolfdieter Lang, Dec 22 2020
LINKS
Christine Patterson, Sage Program
EXAMPLE
For D=3, the least positive y for which x^2-D*y^2=-2 has a solution is 1. The next prime, D, for which x^2-D*y^2=-2 has a solution is 11, but the smallest positive y in this case is also 1, which is equal to the previous record y. So 11 is not a term.
The next prime, D, after 11 for which x^2-D*y^2=-2 has a solution is 19 and the least positive y for which it has a solution is y=3, which is larger than 1, so it is a new record y value. So 19 is a term of this sequence and 3 is a term of A336793.
CROSSREFS
KEYWORD
nonn
AUTHOR
Christine Patterson, Oct 14 2020
STATUS
approved