OFFSET
1,1
COMMENTS
"Encoded in binary representation" means that a polynomial a(n)*X^n+...+a(0)*X^0 over GF(2) is represented by the binary number a(n)*2^n+...+a(0)*2^0 in Z (where each coefficient a(k) = 0 or 1).
Subsequence with Hamming weight nonprime starts 2, 1019, 1279, 1531, 1663, 1759, 1783, 1789, 2011, 2027, 2543, 2551, ... [Joerg Arndt, Nov 01 2013]. These are now given by A255569. - Antti Karttunen, May 14 2015
LINKS
MATHEMATICA
okQ[p_] := Module[{id, pol, x}, id = IntegerDigits[p, 2] // Reverse; pol = id.x^Range[0, Length[id] - 1]; IrreduciblePolynomialQ[pol, Modulus -> 2]];
Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Feb 06 2023 *)
PROG
(PARI)
is(n)=polisirreducible( Mod(1, 2) * Pol(digits(n, 2)) );
forprime(n=2, 10^3, if (is(n), print1(n, ", ")));
\\ Joerg Arndt, Nov 01 2013
CROSSREFS
Apart from a(2) = 3 a subsequence of A027697. The numbers in A027697 but not here are listed in A238186.
Cf. A091209 (Primes whose binary expansion encodes a polynomial reducible over GF(2)), A091212 (Composite, and reducible over GF(2)), A091214 (Composite, but irreducible over GF(2)), A257688 (either 1, prime or irreducible over GF(2)).
Subsequence: A255569.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 03 2004
STATUS
approved