login
A091206
Primes whose binary representation encodes a polynomial irreducible over GF(2).
26
2, 3, 7, 11, 13, 19, 31, 37, 41, 47, 59, 61, 67, 73, 97, 103, 109, 131, 137, 157, 167, 191, 193, 211, 229, 239, 241, 283, 313, 379, 397, 419, 433, 463, 487, 499, 557, 563, 587, 601, 607, 613, 617, 631, 647, 661, 677, 701, 719, 757, 761, 769, 787, 827, 859
OFFSET
1,1
COMMENTS
"Encoded in binary representation" means that a polynomial a(n)*X^n+...+a(0)*X^0 over GF(2) is represented by the binary number a(n)*2^n+...+a(0)*2^0 in Z (where each coefficient a(k) = 0 or 1).
Subsequence with Hamming weight nonprime starts 2, 1019, 1279, 1531, 1663, 1759, 1783, 1789, 2011, 2027, 2543, 2551, ... [Joerg Arndt, Nov 01 2013]. These are now given by A255569. - Antti Karttunen, May 14 2015
FORMULA
a(n) = A000040(A091207(n)) = A014580(A091208(n)).
MATHEMATICA
okQ[p_] := Module[{id, pol, x}, id = IntegerDigits[p, 2] // Reverse; pol = id.x^Range[0, Length[id] - 1]; IrreduciblePolynomialQ[pol, Modulus -> 2]];
Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Feb 06 2023 *)
PROG
(PARI)
is(n)=polisirreducible( Mod(1, 2) * Pol(digits(n, 2)) );
forprime(n=2, 10^3, if (is(n), print1(n, ", ")));
\\ Joerg Arndt, Nov 01 2013
CROSSREFS
Intersection of A014580 and A000040.
Apart from a(2) = 3 a subsequence of A027697. The numbers in A027697 but not here are listed in A238186.
Also subsequence of A235045 (its primes. Cf. also A235041-A235042).
Cf. A091209 (Primes whose binary expansion encodes a polynomial reducible over GF(2)), A091212 (Composite, and reducible over GF(2)), A091214 (Composite, but irreducible over GF(2)), A257688 (either 1, prime or irreducible over GF(2)).
Subsequence: A255569.
Sequence in context: A155153 A014580 A197227 * A357713 A038963 A167609
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 03 2004
STATUS
approved