login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255569
Primes whose binary representation encodes an irreducible polynomial over GF(2) and has a nonprime number of 1's.
3
2, 1019, 1279, 1531, 1663, 1759, 1783, 1789, 2011, 2027, 2543, 2551, 2687, 2879, 2927, 2999, 3037, 3319, 3517, 3547, 3559, 3709, 3833, 3947, 4007, 4013, 4021, 4051, 4073, 4591, 5023, 5039, 5051, 5107, 5563, 5591, 5743, 5821, 5981, 6067, 6271, 6607, 6637, 6779, 6959, 7079, 7351, 7411, 7517, 7541, 7591, 7603, 7727, 7741, 7823, 7907, 7963, 7993
OFFSET
1,1
LINKS
MAPLE
filter:= proc(n)
local a, i, x;
if not isprime(n) then return false fi;
a:= convert(n, base, 2);
not isprime(convert(a, `+`)) and (Irreduc(add(x^(i-1)*a[i], i=1..nops(a))) mod 2)
end proc:
select(filter, [2, 2*j+1$j=1..10000]); # Robert Israel, May 14 2015
MATHEMATICA
okQ[p_?PrimeQ] := Module[{id, pol, x}, id = IntegerDigits[p, 2] // Reverse; pol = id.x^Range[0, Length[id]-1]; IrreduciblePolynomialQ[pol, Modulus -> 2] && !PrimeQ[Count[id, 1]]];
Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Feb 09 2023 *)
PROG
(PARI)
isA014580(n) = polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
i = 0; forprime(n=2, 2^31, if(isA014580(n)&&!isprime(hammingweight(n)), i++; write("b255569.txt", i, " ", n); if(i>=10000, return(n))));
CROSSREFS
Intersection of A091206 and A084345.
Intersection of A014580 and A255564.
Sequence in context: A258661 A370557 A024033 * A354534 A004897 A004802
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 14 2015 after Joerg Arndt's Nov 01 2013 comment in A091206
STATUS
approved