OFFSET
0,3
COMMENTS
Like A091203 this is a factorization-preserving isomorphism from GF(2)[X]-polynomials to integers. The former are encoded in the binary representation of n like this: n=11, '1011' in binary, stands for polynomial x^3+x+1, n=25, '11001' in binary, stands for polynomial x^4+x^3+1. However, this version does not map the irreducible GF(2)[X] polynomials (A014580) straight to the primes (A000040), but instead fixes the intersection of those two sets (A091206), and maps the elements in their set-wise difference A014580 \ A000040 (= A091214) in numerical order to the set-wise difference A000040 \ A014580 (= A091209).
LINKS
FORMULA
a(0)=0, a(1)=1, a(p) = p for those irreducible GF(2)[X]-polynomials whose binary encoding is a prime (i.e., p is in A091206), and for the rest of irreducible GF(2)[X]-polynomials (those which are encoded by a composite natural number, i.e., q is in A091214), a(q) = A091209(A235044(q)), and for reducible polynomials, a(i X j X k X ...) = a(i) * a(j) * a(k) * ..., where each i, j, k, ... is in A014580, X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and * for the ordinary multiplication of integers (A004247).
EXAMPLE
Here (t X u) = A048720(t,u):
a(2)=2, a(3)=3 and a(7)=7, as 2, 3 and 7 are all in A091206.
a(4) = a(2 X 2) = a(2)*a(2) = 2*2 = 4.
a(5) = a(3 X 3) = a(3)*a(3) = 3*3 = 9.
a(9) = a(3 X 7) = a(3)*a(7) = 3*7 = 21.
a(10) = a(2 X 3 X 3) = a(2)*a(3)*a(3) = 2*3*3 = 18.
a(15) = a(3 X 3 X 3) = a(3)^3 = 3^3 = 27.
a(17) = a(3 X 3 X 3 X 3) = a(3)^4 = 3^4 = 81.
a(21) = a(7 X 7) = a(7)*a(7) = 7*7 = 49.
a(50) = a(2 X 25) = a(2)*a(25) = 2*5 = 10.
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 02 2014
STATUS
approved