login
A106447
Doubly-recursed cross-domain bijection from GF(2)[X] to N. Variant of A091205 and A106445.
6
0, 1, 2, 3, 4, 9, 6, 5, 8, 15, 18, 7, 12, 23, 10, 27, 16, 81, 30, 13, 36, 25, 14, 69, 24, 11, 46, 45, 20, 21, 54, 19, 512, 57, 162, 115, 60, 47, 26, 63, 72, 61, 50, 33, 28, 135, 138, 17, 48, 35, 22, 19683, 92, 39, 90, 37, 40, 207, 42, 83, 108, 29, 38, 75, 64, 225, 114
OFFSET
0,3
COMMENTS
Differs from A091205 for the first time at n=32, where A091205(32)=32, while a(32)=512. Differs from A106445 for the first time at n=13, where A106445(13)=11, while a(13)=23.
FORMULA
a(0)=0, a(1)=1. For irreducible GF(2)[X] polynomials ir_i with index i (i.e. A014580(i)), a(ir_i) = A000040(a(i)) and for composite polynomials n = A048723(ir_i, e_i) X A048723(ir_j, e_j) X A048723(ir_k, e_k) X ..., a(n) = a(ir_i)^a(e_i) * a(ir_j)^a(e_j) * a(ir_k)^a(e_k) * ... = A000040(a(i))^a(e_i) * A000040(a(j))^a(e_j) * A000040(a(k))^a(e_k), where X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and A048723(n, y) raises the n-th GF(2)[X] polynomial to the y:th power, while * is the ordinary multiplication and ^ is the ordinary exponentiation.
EXAMPLE
a(5) = 9, as 5 encodes the GF(2)[X] polynomial x^2+1, which is the square of the second irreducible GF(2)[X] polynomial x+1 (encoded as 3), a(2)=2 and the square of the second prime is 3^2=9. a(13) = a(A014580(5)) = A000040(a(5)) = A000040(9) = 23. a(32) = a(A048723(2,5)) = a(2)^a(5) = 2^9 = 512. a(48) = a(3 X A048723(2,4)) = a(3) * a(2)^a(4) = 3 * 2^4 = 3 * 16 = 48.
CROSSREFS
Inverse: A106446. Variant: A091205.
Sequence in context: A106445 A106443 A091205 * A356886 A359416 A222248
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 09 2005
STATUS
approved