login
A091209
Primes whose binary representation encodes a polynomial reducible over GF(2).
25
5, 17, 23, 29, 43, 53, 71, 79, 83, 89, 101, 107, 113, 127, 139, 149, 151, 163, 173, 179, 181, 197, 199, 223, 227, 233, 251, 257, 263, 269, 271, 277, 281, 293, 307, 311, 317, 331, 337, 347, 349, 353, 359, 367, 373, 383, 389, 401, 409, 421, 431, 439, 443, 449, 457, 461, 467, 479, 491, 503, 509, 521, 523
OFFSET
1,1
COMMENTS
"Encoded in binary representation" means that a polynomial a(n)*X^n+...+a(0)*X^0 over GF(2) is represented by the binary number a(n)*2^n+...+a(0)*2^0 in Z (where each coefficient a(k) = 0 or 1).
Except for 3, all primes with even Hamming weight (A027699) are terms, see A238186 for the subsequence of primes with odd Hamming weight. [Joerg Arndt and Antti Karttunen, Feb 19 2014]
FORMULA
a(n) = A000040(A091210(n)) = A091242(A091211(n)).
Other identities. For all n >= 1:
A235043(a(n)) = n. [A235043 works as a left inverse of this sequence.]
MAPLE
Primes:= select(isprime, [2, seq(2*i+1, i=1..1000)]):
filter:= proc(n) local L, x;
L:= convert(n, base, 2);
Irreduc(add(L[i]*x^(i-1), i=1..nops(L))) mod 2;
end proc:
remove(filter, Primes); # Robert Israel, May 17 2015
MATHEMATICA
Select[Prime[Range[2, 100]], !IrreduciblePolynomialQ[bb = IntegerDigits[#, 2]; Sum[bb[[k]] x^(k-1), {k, 1, Length[bb]}], Modulus -> 2]&] (* Jean-François Alcover, Feb 28 2016 *)
PROG
(PARI) forprime(p=2, 10^3, if( ! polisirreducible( Mod(1, 2)*Pol(binary(p)) ), print1(p, ", ") ) ); \\ Joerg Arndt, Feb 19 2014
CROSSREFS
Intersection of A000040 and A091242.
Disjoint union of A238186 and (A027699 \ {3}).
Left inverse: A235043.
Cf. A091206 (Primes whose binary expansion encodes a polynomial irreducible over GF(2)), A091212 (Composite, and reducible over GF(2)), A091214 (Composite, but irreducible over GF(2)).
Sequence in context: A322985 A240031 A260427 * A307471 A226671 A226674
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 03 2004
STATUS
approved