OFFSET
1,1
COMMENTS
"Encoded in binary representation" means that a polynomial a(n)*X^n+...+a(0)*X^0 over GF(2) is represented by the binary number a(n)*2^n+...+a(0)*2^0 in Z (where each coefficient a(k) = 0 or 1).
Except for 3, all primes with even Hamming weight (A027699) are terms, see A238186 for the subsequence of primes with odd Hamming weight. [Joerg Arndt and Antti Karttunen, Feb 19 2014]
LINKS
FORMULA
MAPLE
Primes:= select(isprime, [2, seq(2*i+1, i=1..1000)]):
filter:= proc(n) local L, x;
L:= convert(n, base, 2);
Irreduc(add(L[i]*x^(i-1), i=1..nops(L))) mod 2;
end proc:
remove(filter, Primes); # Robert Israel, May 17 2015
MATHEMATICA
Select[Prime[Range[2, 100]], !IrreduciblePolynomialQ[bb = IntegerDigits[#, 2]; Sum[bb[[k]] x^(k-1), {k, 1, Length[bb]}], Modulus -> 2]&] (* Jean-François Alcover, Feb 28 2016 *)
PROG
(PARI) forprime(p=2, 10^3, if( ! polisirreducible( Mod(1, 2)*Pol(binary(p)) ), print1(p, ", ") ) ); \\ Joerg Arndt, Feb 19 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 03 2004
STATUS
approved