

A322985


Numbers k such that 123456789*10^k+1 is prime.


0



1, 5, 17, 23, 25, 28, 91, 187, 287, 398, 899, 1364, 2921, 5125, 5890, 8780, 14881, 35689, 46669, 71861, 111710
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(22) > 1.3*10^5. All numbers up to this bound were sieved using newpgen and sr1sieve. Remaining numbers were checked for primality using Jean PennĂ©'s LLR application (BLS (N1/N+1) test).


LINKS

Table of n, a(n) for n=1..21.


EXAMPLE

1 is a term because 1234567891 is prime.
2 is not a term because 12345678901 is composite (it is divisible by 857).


MATHEMATICA

Select[Range@ 1400, PrimeQ[123456789*10^# + 1] &] (* Michael De Vlieger, Jan 04 2019 *)


PROG

(Python)
from sympy.ntheory.primetest import isprime
for n in range(1, 1000):
if isprime(123456789*10**n+1):
print(n, end=', ') # Stefano Spezia, Jan 05 2019


CROSSREFS

Cf. A248349, A248350, A321806.
Sequence in context: A317262 A031270 A022141 * A240031 A260427 A091209
Adjacent sequences: A322982 A322983 A322984 * A322986 A322987 A322988


KEYWORD

nonn,more


AUTHOR

Matthias Baur, Jan 01 2019


STATUS

approved



